Answer:
(A) the angular acceleration of the blades is 13.33 m/s.
Explanation:
Given;
moment of inertia of a blade, I = 0.2 kgm²
net torque exerted on fan blades, ∑τ = 8Nm
Torque is given as product of moment of inertia and angular acceleration;
τ = Iα
where;
α is the angular acceleration
Since there are three blades of the ceiling fan, the net torque is given as;
∑τ = (3I)α
∑τ = 3Iα
α = ∑τ / 3I
α = (8) / (3 x 0.2)
α = 13.33 m/s
Therefore, the angular acceleration of the blades is 13.33 m/s.
Answer:
2. A 1 litre mug of hot chocolate at 75 degrees.
Explanation:
Thermal energy is directly proportional to mass, so as the mass increases, the thermal energy of the substance increases as well.
Answer:
From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to
1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.
2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity
3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.
4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.
5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.
Q= mcΔT
Where Q is heat or energy
M is mass, c is heat capacitance and t is temperature
You have to convert Celsius into kelvin in order to use this formula I believe
Celsius + 273 = Kelvin
21 + 273 = 294K
363 + 273 = 636K
Now...
Q= (0.003)(0.129)(636-294)
Q= 0.132 J if you are using kilograms, in terms of grams which seems more appropriate the answer would be 132J of energy.