Answer:
d. The large pot of water and small cup of water have the same temperature, but the large pot of water has higher thermal energy.
Explanation:
Temperature is a measure of the average kinetic energy of individual molecules. While internal energy refers to the total kinetic energy of the molecules within the object. Since in this case we have the same amount of average kinetic energy, then the large pot of water and small cup of water have the same temperature. While the large pot of water has higher thermal energy, since has more water particles than the small cup.
The problem of the "sound barrier" has to do with moving through
air, and the things the air does when you try to push it out of the
way faster than the speed of sound. Moving through air faster
than sound was an engineering and technological problem, not
a scientific one.
Concerning light, that's about 874 thousand times faster.
See the problem ?
Answer: Gravitational potential energy changes.
Explanation: This is because depending on the amount of mass in an object that’s the amount of gravity pulling you down to the center of the earth
<span>Example Problems. Kinetic Energy (KE = ½ m v2). 1) The velocity of a car is 65 m/s and its mass is 2515 kg. What is its KE? 2) If a 30 kg child were running at a rate of 9.9 m/s, what is his KE? Practice Problems. IN THIS ORDER…. Page 2: #s 6, 7, 8, 5. Potential Energy. An object can store energy as the result of its position.</span><span>
</span>
Answer:
Mutual inductance,
Explanation:
(a) A toroidal solenoid with mean radius r and cross-sectional area A is wound uniformly with N₁ turns. A second thyroidal solenoid with N₂ turns is wound uniformly on top of the first, so that the two solenoids have the same cross-sectional area and mean radius.
Mutual inductance is given by :
(b) It is given that,
Radius, r = 10.6 cm = 0.106 m
Area of toroid,
Mutual inductance,
or
So, the value of mutual inductance of the toroidal solenoid is . Hence, this is the required solution.