After the crash the momentum before the crash is equal to the momentum after the crash
A compression is where the particles in the air are closer together, so where those black lines are closer together.
A rarefaction is the opposite, where they're spread out.
The wavelength is the distance between two compressions or rarefactions (i.e. two peaks or troughs on a graph), therefore thats the horizontal arrows.
The amplitude is the distance from the centre of the wave to the peak or trough, so that is the vertical distance on the diagram.
The options are missing and they are;
A) the electric force increases because the balloon loses its charge.
B) the electric force increases because the distance increases.
C) the electric force decreases because the distance increases.
D) the electric force decreases because his hair loses its charge.
Answer:
Correct answer is option C - the electric force decreases because the distance increases.
Explanation:
The formula for electric force is;
F = k•q1•q2/r²
Where;
K is coulombs constant
q1 and q2 are particle charges
r is distance
So,looking at the formula given earlier, if we increase the distance, the denominator will increase and thus the Force will decrease.
So the correct option is option C
I = V/Z
V = voltage, I = current, Z = impedance
First let's find the total impedance of the circuit.
The impedance of the resistor is:
= R
R = resistance
Given values:
R = 1200Ω
Plug in:
= 1200Ω
The impedance of the inductor is:
= j2πfL
f = source frequency, L = inductance
Given values:
f = 59Hz, L = 2.4H
Plug in:
= j2π(59)(2.4) = j889.7Ω
Add up the individual impedances to get the Z, and convert Z to polar form:
Z =
+ 
Z = 1200 + j889.7
Z = 1494∠36.55°Ω
I = V/Z
Given values:
V = 170∠0°V (assume 0 initial phase)
Z = 1494∠36.55°Ω
I = 170∠0°/1494∠36.55°Ω
I = 0.1138∠-36.55°A
Round the magnitude of I to 2 significant figures and now you have your maximum current:
I = 0.11A