Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:
(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz
Answer:
INCREASES, BECAUSE ITS ANGULAR MOMENTUM IS CONSERVED.
Explanation: Interstellar cloud of Hydrogen is an accumulation of Hydrogen gas in the cloud.
As the Interstellar cloud of Hydrogen shrinks (reduces) in size,the rate of rotation of the shrinked Interstellar cloud Increases because its angular momentum is conserved. GASEOUS MOLECULES MAKE UP ABOUT 99% OF THE INTERSTELLAR CLOUD WITH HYDROGEN HAVING ABOUT 90% OF THE VOLUME OF GASES IN THE INTERSTELLAR CLOUD.
Answer:
Approximately , assuming that the volume of these two charged objects is negligible.
Explanation:
Assume that the dimensions of these two charged objects is much smaller than the distance between them. Hence, Coulomb's Law would give a good estimate of the electrostatic force between these two objects regardless of their exact shapes.
Let and denote the magnitude of two point charges (where the volume of both charged object is negligible.) In this question, and .
Let denote the distance between these two point charges. In this question, .
Let denote the Coulomb constant. In standard units, .
By Coulomb's Law, the magnitude of electrostatic force (electric force) between these two point charges would be:
.
Substitute in the values and evaluate:
.
Answer:
(d) a net external force must be acting on the system
Explanation:
Momentum is given as the product of mass and velocity.
P = MV
According to Newton's second law of motion, " Force applied to a body (system) is directly proportional to the rate of change of momentum of the body (system) which takes place in the direction of the applied force (external force).
F ∝ΔMV
Therefore, If the total momentum of a system is changing, a net external force must be acting on the system.
(d) a net external force must be acting on the system
Since the two waves have equal amplitudes, if the crest of one wave
meets the trough of the other one, they'll add to produce a level of zero
at that location.