Answer:
Hydrogen bromide, anhydrous appears as a colorless gas with a pungent irritating odor. Corrosive. Heavier than air. Prolonged exposure to fire or intense heat may result in the violent rupture and rocketing of the container. Long-term exposure to low concentrations or short-term exposure to high concentrations can result in adverse health effects from inhalation. Used to make other chemicals and as a catalyst in the manufacture of chemicals. Rate of onset: Immediate Persistence: Minutes to hours Odor threshold: 2 ppm Source/use/other hazard: Chemical manufacturing industry; very corrosive.
Explanation:
HBr
Answer:
b is the answer
Explanation:
non metals are not shiny, brittle, unmalleable, and are poor conductors of thermal energy and electrical current.
Answer:
See Explanation
Explanation:
Because you have to get through the d-block electron configurations for the rest of the p-block elements which is a hassle to do. You need to know how to account for electron stability, from which subshell to remove electrons, etc. because it is all weird for d-block.
Hello!
In an endothermic reaction, The potential energy of the products is greater than the potential energy of the reactants.
Any chemical reaction that absorbs energy is called an Endothermic Reaction. In this reactions, the reactants absorb energy from the surroundings to carry out the reaction. As a result, the products have a higher potential energy than the reactants. Photosynthesis is an example of an Endothermic Reaction, as the plant uses energy from the sun to generate the products.
Have a nice day!
<u>Answer:</u> The vapor pressure of the liquid is 0.293 atm
<u>Explanation:</u>
To calculate the vapor pressure of the liquid, we use the Clausius-Clayperon equation, which is:
![\ln(\frac{P_2}{P_1})=\frac{\Delta H_{vap}}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%3D%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial pressure which is the pressure at normal boiling point = 1 atm
= pressure of the liquid = ?
= Heat of vaporization = 28.9 kJ/mol = 28900 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = 341.88 K
= final temperature = 305.03 K
Putting values in above equation, we get:
![\ln(\frac{P_2}{1})=\frac{28900J/mol}{8.314J/mol.K}[\frac{1}{341.88}-\frac{1}{305.03}]\\\\\ln P_2=-1.228atm\\\\P_2=e^{-1.228}=0.293atm](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BP_2%7D%7B1%7D%29%3D%5Cfrac%7B28900J%2Fmol%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B341.88%7D-%5Cfrac%7B1%7D%7B305.03%7D%5D%5C%5C%5C%5C%5Cln%20P_2%3D-1.228atm%5C%5C%5C%5CP_2%3De%5E%7B-1.228%7D%3D0.293atm)
Hence, the vapor pressure of the liquid is 0.293 atm