The type of circuit depicted above is an example of a parallel circuit. Parallel circuits are circuits that have several pathways for current to flow; the easiest way to see this is by drawing a condensed diagram. If one of the bulbs were removed (that particular pathway was opened so electricity couldn’t flow), the current could simply go through another pathway using another lightbulb and the circuit would still be complete. Series circuits only have one pathway that the current can flow through, which this can’t be since it has multiple. The circuit isn’t shorted since the lightbulb reduces the voltage to zero, and the circuit is closed since the lightbulbs are on.
Hope this helps!
I think the answer is 98 grams
Answer:
A) 31.22
Explanation:
The reaction of sulfuric acid with NaOH is:
H₂SO₄ + 2 NaOH → Na₂SO₄ + 2H₂O
To solve this problem we need to determine the moles of acid that will react, and, using the chemical equation we can determine the moles of NaOH and the volume that a 0.2389M NaOH solution would require to neutralize it.
<em>Moles H₂SO₄ (Molar mass: 98.08g/mol):</em>
0.9368g * 39.04% = 0.3657g H₂SO₄ * (1mol / 98.08g) =
3.7289x10⁻³moles H₂SO₄
And moles of NaOH that you require to neutralize the acid are:
3.7289x10⁻³moles H₂SO₄ * (2 moles NaOH / 1 mole H₂SO₄) =
7.4578x10⁻³ moles NaOH
Using a 0.2389M NaOH solution:
7.4578x10⁻³ moles NaOH * (1L / 0.2389mol) = 0.03122L = 31.22mL
Right answer is:
<h3>A) 31.22
</h3>
Answer:
E²⁺
Explanation:
The group two contain alkaline earth metals.
There are six elements in group 2A.
Beryllium, Magnesium, calcium, strontium, barium and radium.
All members have two valance electrons.
They lose two valance electrons to complete the octet.
When they lose the two valance electrons they form cation X²⁺.
They react with halogens and form salt such as
MgCl₂, CaCl₂ etc.
Mg²⁺ Cl²⁻₂
The oxidation state of halogens are -1, while the elements of group two A shows +2 that's why two atoms of halogen are combine with one atom of alkaline earth metals and make the compound overall neutral.
All the alkaline earth metals have similar properties.
Answer:
4.26 %
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.50 × 10
⁻⁴.</em>
<em />
Step 1: Given data
Initial concentration of the acid (Ca): 0.249 M
Acid dissociation constant (Ka): 4.50 × 10
⁻⁴
Step 2: Write the ionization reaction for nitrous acid
HNO₂(aq) ⇒ H⁺(aq) + NO₂⁻(aq)
Step 3: Calculate the concentration of nitrite in the equilibrium ([A⁻])
We will use the following expression.
![[A^{-} ] = \sqrt{Ca \times Ka } = \sqrt{0.249 \times 4.50 \times 10^{-4} } = 0.0106 M](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%20%5D%20%3D%20%5Csqrt%7BCa%20%5Ctimes%20Ka%20%7D%20%3D%20%5Csqrt%7B0.249%20%5Ctimes%204.50%20%5Ctimes%2010%5E%7B-4%7D%20%20%7D%20%3D%200.0106%20M)
Step 4: Calculate the percent ionization of nitrous acid
We will use the following expression.
![\alpha = \frac{[A^{-} ]}{[HA]} \times 100\% = \frac{0.0106M}{0.249} \times 100\% = 4.26\%](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B%5BA%5E%7B-%7D%20%5D%7D%7B%5BHA%5D%7D%20%5Ctimes%20100%5C%25%20%3D%20%5Cfrac%7B0.0106M%7D%7B0.249%7D%20%5Ctimes%20100%5C%25%20%3D%204.26%5C%25)