Answer:
The dots were not properly located and arrows are not used in Lewis structures
Explanation:
If we intend to write a Lewis structure for a compound, that lewis structure must consist of only dots. These dots actually show the valence electrons on the outermost shell of the molecule.
We do not involve arrows when writing dot electron structures for compounds. The valence electrons of magnesium ought not to be written together because they are not a lone pair, rather they are two unpaired electrons. The use of an arrow suggests a coordinate covalent bond which is not the case here.
The correct lewis structure for MgCl2 is shown in the image attached to this answer.
Explanation:
Energy makes molecules in the air move faster and expand, decreasing density. The opposite is true for cold air. Molecules are closer together, and absorb less energy.
<u>Question:</u>
For the cell constructed from the hydrogen electrode and metal-insoluble salt electrode, B) calculate the mean activity coefficient for 0.124 b HCl solution if E=0.342 V at 298 K
<u>Answer:</u>
The mean activity coefficient for HCl solution is 0.78.
<u>Explanation:</u>
Activity coefficient is defined as the ratio of any chemical activity of any substance with its molar concentration. So in an electrochemical cell, we can write activity coefficient as γ. The equation for determining the mean activity coefficient is

As we know that
= 0.22 V and E = 0.342 V, the equation will become








So, the mean activity coefficient is 0.78.