When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J
Answer:
The group 15 elements: the pnicogens
Explanation:
The group 15 elements, nitrogen, phosphorus, arsenic, antimony and bismuth, all have the general valence shell electronic configuration ns2np3. They can all exist in the +3 or +5 oxidation state, with the +3 state increasing in stability as we move vertically down the group.
Answer:
Has size and magnitude whereas a scalar quantity has only size
Answer:
0.16mole
Explanation:
To solve this problem, we are going to assume that the number of moles of carbon to be determined is that at STP, standard temperature and pressure.
The number of moles of a substance at STP is given as;
Number of moles =
Given volume = 3.5L
Now, insert the parameters;
Number of moles =
= 0.16mole
Foliation occurs when the pressure squeezes the flat or elongated minerals within a rock so that they become aligned.