Answer:
The equation is already balanced. There's an equal number of materials on each side of the equation.
Answer:
False
Explanation:
That's because elements in a compound combine and become an entirely different substance with its own unique properties.
Answer:
9.80 g
Explanation:
The molecular mass of the atoms mentioned in the question is as follows -
S = 32 g / mol
F = 19 g / mol
The molecular mass of the compound , SF₆ = 32 + ( 6 * 19 ) = 146 g / mol
The mass of 6 F = 6 * 19 = 114 g /mol .
The percentage of F in the compound =
mass of 6 F / total mass of the compound * 100
Hence ,
The percentage of F in the compound = 114 g /mol / 146 g / mol * 100
78.08 %
Hence , from the question ,
In 12.56 g of the compound ,
The grams of F = 0.7808 * 12.56 = 9.80 g
Answer:
I got you... 2 amino acids are linked to each other by a peptide linkage. A peptide linkage is formed when carboxyl group of one amino acid combine with the amine group of the other and during this process, a water molecule is removed.
The given tripeptide will have 2 peptide bonds. To draw the structure of given tripeptide, we will arrange them in the given order and then we will remove 2 water molecules to form 2 peptide bonds.
Explanation:
Hope this helps:)
Answer:
A and D are true , while B and F statements are false.
Explanation:
A) True. Since the standard gibbs free energy is
ΔG = ΔG⁰ + RT*ln Q
where Q= [P1]ᵃ.../([R1]ᵇ...) , representing the ratio of the product of concentration of chemical reaction products P and the product of concentration of chemical reaction reactants R
when the system reaches equilibrium ΔG=0 and Q=Keq
0 = ΔG⁰ + RT*ln Q → ΔG⁰ = (-RT*ln Keq)
therefore the first equation also can be expressed as
ΔG = RT*ln (Q/Keq)
thus the standard gibbs free energy can be determined using Keq
B) False. ΔG⁰ represents the change of free energy under standard conditions . Nevertheless , it will give us a clue about the ΔG around the standard conditions .For example if ΔG⁰>>0 then is likely that ΔG>0 ( from the first equation) if the temperature or concentration changes are not very distant from the standard conditions
C) False. From the equation presented
ΔG⁰ = (-RT*ln Keq)
ΔG⁰>0 if Keq<1 and ΔG⁰<0 if Keq>1
for example, for a reversible reaction ΔG⁰ will be <0 for forward or reverse reaction and the ΔG⁰ will be >0 for the other one ( reverse or forward reaction)
D) True. Standard conditions refer to
T= 298 K
pH= 7
P= 1 atm
C= 1 M for all reactants
Water = 55.6 M