Answer:
Boiling water breaks intermolecular attractions and electrolysis breaks covalent bonds.
Explanation:
When water boils, hydrogen bonds are broken between adjacent water molecules. The hydrogen bond is an intermolecular bond between adjacent oxygen and hydrogen atoms of water molecules.
During electrolysis, water dissociates in the presence of electric current. Here, ions are formed in the process. Therefore, covalent bonds are broken here.
Answer:
Mass of Oxygen = 32 grams
Explanation:
Given:
Mass of water = 36 grams
Mass of Hydrogen = 4 grams
Find:
Mass of Oxygen
Computation:
Using Law of Conservation of mass
Mass of water = Mass of Hydrogen + Mass of Oxygen
36 grams = 4 grams + Mass of Oxygen
Mass of Oxygen = 32 grams
Answer:
Sodium.
Explanation:
Sodium is a chemical element with the symbol Na and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is ²³Na.
Answer:
the relation of two different forms of the same substance (such as two allotropic forms of tin) that have a definite transition point and can therefore change reversibly each into the other — compare monotropy.
Answer:
A. for K>>1 you can say that the reaction is nearly irreversible so the forward direction is favored. (Products formation)
B. When the temperature rises the equilibrium is going to change but to know how is going to change you have to take into account the kind of reaction. For endothermic reactions (the reverse reaction is favored) and for exothermic reactions (the forward reaction is favored)
Explanation:
A. The equilibrium constant K is defined as

In any case
aA +Bb equilibrium Cd +dD
where K is:
![K= \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}](https://tex.z-dn.net/?f=K%3D%20%5Cfrac%7B%5BC%5D%5E%7Bc%7D%5BD%5D%5E%7Bd%7D%7D%7B%5BA%5D%5E%7Ba%7D%5BB%5D%5E%7Bb%7D%7D)
[] is molar concentration.
If K>>> 1 it means that the molar concentration of products is a lot bigger that the molar concentration of reagents, so the forward reaction is favored.
B. The relation between K and temperature is given by the Van't Hoff equation

Where: H is reaction enthalpy, R is the gas constant and T temperature.
Clearing the equation for
we get:

Here we can study two cases: when delta
is positive (exothermic reactions) and when is negative (endothermic reactions)
For exothermic reactions when we increase the temperature the denominator in the equation would have a negative exponent so
is greater that
and the forward reaction is favored.
When we have an endothermic reaction we will have a positive exponent so
will be less than
the forward reactions is not favored.
