(missing part of your question):
when we have K = 1 x 10^-2 and [A] = 2 M & [B] = 3M & m= 2 & i = 1
So when the rate = K[A]^m [B]^i
and when we have m + i = 3 so the order of this reaction is 3 So the unit of K is L^2.mol^-2S^-1
So by substitution:
∴ the rate = (1x 10 ^-2 L^-2.mol^-2S^-1)*(2 mol.L^-1)^2*(3mol.L^-1)
= 0.12 mol.L^-1.S^-1
Answer:
900 K
Explanation:
Recall the ideal gas law:

Because only pressure and temperature is changing, we can rearrange the equation as follows:

The right-hand side stays constant. Therefore:

The can explodes at a pressure of 90 atm. The current temperature and pressure is 300 K and 30 atm, respectively.
Substitute and solve for <em>T</em>₂:

Hence, the temperature must be reach 900 K.
Answer:
Alkane
Alkene
Alkyne
Explanation:
Alkane=1 bond (Saturated hydrocarbon)
Alkene= 2 bonds (Unsaturated hydrocarbon)
Alkyne= triple bonds (Unsaturated hydrocarbon)
Formula of Alkane = CnH2n+2
Formula of Alkene = CnH2n
Formula of Alkyne = CnH2n-2
Electrons and protons because they are essentially always the same
Answer:
1) Increase temperature
2) Decrease temperature
3) Increase concentration of reactants
4) Increase pressure
5) Decrease pressure
Explanation:
Le Chatelier's Principle Fundamentals states that a chemical reaction at equilibrium that undergoes changes to pressure, temperature, or concentration, this will cause the equilibrium to shift in the opposite direction to offset the change.
1) Increase temperature
2) Decrease temperature
3) Increase concentration of reactants
4) Increase pressure
5) Decrease pressure