Answer:

Step-by-step explanation:
Given:
Given point P(6, 6)
The equation of the line.

We need to find the equation of the line perpendicular to the given line that contains P
Solution:
The equation of the line.

Now, we compare the given equation by standard form 
So, slope of the line
, and
y-intercept 
We know that the slope of the perpendicular line 



So, the slope of the perpendicular line
From the above statement, line passes through the point P(6, 6).
Using slope intercept formula to know y-intercept.

Substitute point
and 




So, the y-intercept of the perpendicular line 
Using point slope formula.

Substitute
and
in above equation.

Therefore: the equation of the perpendicular line 
Answer:
x=15
Step-by-step explanation:
crown plz
Answer:
The approximate percentage of SAT scores that are less than 865 is 16%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 1060, standard deviation of 195.
Empirical Rule to estimate the approximate percentage of SAT scores that are less than 865.
865 = 1060 - 195
So 865 is one standard deviation below the mean.
Approximately 68% of the measures are within 1 standard deviation of the mean, so approximately 100 - 68 = 32% are more than 1 standard deviation from the mean. The normal distribution is symmetric, which means that approximately 32/2 = 16% are more than 1 standard deviation below the mean and approximately 16% are more than 1 standard deviation above the mean. So
The approximate percentage of SAT scores that are less than 865 is 16%.
Answer:
Step-by-step explanation:
C. f(x) will be a very small negative number, approaching -∞
He bought 60 pounds last week and p stands for 60