Answer:Frequency (hz) is some sort of vibration occurs during a particular period of time as either in a sound waves or in an electromagnetic field. Given below an online frequency of light with wavelength calculator to convert from wavelength to hz. Wavelength (λ) is the distance between two waves of energy traveling from one point to another point.
Explanation:
Answer:
The answer to the question above is
The energy required to heat 87.1 g acetone from a solid at -154.0°C to a liquid at -42.0°C = 29.36 kJ
Explanation:
The given variables are
ΔHfus = 7.27 kJ/mol
Cliq = 2.16 J/g°C
Cgas = 1.29 J/g°C
Csol = 1.65 J/g°C
Tmelting = -95.0°C.
Initial temperature = -154.0°C
Final temperature = -42.0°C?
Mass of acetone = 87.1 g
Molar mass of acetone = 58.08 g/mol
Solution
Heat required to raise the temperature of solid acetone from -154 °C to -95 °C or 59 °C is given by
H = mCsolT = 87.1 g* 1.65 J/g°C* 59 °C = 8479.185 J
Heat required to melt the acetone at -95 °C = ΔHfus*number of moles =
But number of moles = mass÷(molar mass) = 87.1÷58.08 = 1.5
Heat required to melt the acetone at -95 °C =1.5 moles*7.27 kJ/mol = 10.905 kJ
The heat required to raise the temperature to -42 degrees is
H = m*Cliq*T = 87.1 g* 2.16 J/g°C * 53 °C = 9971.21 J
Total heat = 9971.21 J + 10.905 kJ + 8479.185 J = 29355.393 J = 29.36 kJ
The energy required to heat 87.1 g acetone from a solid at -154.0°C to a liquid at -42.0°C is 29.36 kJ
Answer:
A
Explanation:
Ohm's law is stated as E = current * resistance (E = I * R)
When you rearrange the formula, you get R = E/I
The answer is current -- A
Answer:
- a) 2N₂O(g) → 2N₂(g) + O₂(g)
Explanation:
Arrange the equations in the proper way for better understanding.
T<em>he reaction between nitrogen and oxygen is given below:</em>
<em />
- <em>2N₂(g) + O₂(g) → 2N₂O(g)</em>
<em />
<em>We therefore know that which of the following reactions can also occur?</em>
<em />
- <em>a) 2N₂O(g) → 2N₂(g) + O₂(g)</em>
- <em>b) N₂(g) + 2O₂(g) → 2NO₂(g)</em>
- <em>c) 2NO₂(g) → N₂(g) + 2O₂(g)</em>
- <em>d) None of the Above</em>
<h2>Solution</h2>
Notice that the first equation, a) 2N₂O(g) → 2N₂(g) + O₂(g), is the reverse of the original equation, 2N₂(g) + O₂(g) → 2N₂O(g).
The reactions in gaseous phase are reversible reactions that can be driven to one or other direction by modifying the conditions of temperature or pressure.
Thus, the equilibrium equation would be:
Which shows that both the forward and the reverse reactions occur.
Whether one or the other are favored would depend on the temperature and pressure: high temperatures would favor the reaction that consumes more heat (the endothermic reaction) and high pressures would favor the reaction that consumes more moles.
Thus, by knowing that one of the reactions can occur you can conclude that the reverse reaction can also occur.
C, <span>Fuel cell cars do not release greenhouse gases, is the best choice. Hydrogen fuel cells do not release carbon dioxide.</span>