<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>
Answer:
a. 1.027 x 10^7 m/s b. 3600 V c. 0 V and d. 1.08 MeV
Explanation:
a. KE =1/2 (MV^2) where the M is mass of electron
b. E = V/d
c. V= 0 V (momentarily the pd changes to zero)
d KE= 300*3600 v = 1.08 MeV
Answer:
F = 2.6692 x 10⁻⁹ N
Explanation:
Given,
The mass of the rock, m = 10 kg
The mass of the boulder, M = 100 kg
The distance between them, d = 5 m
The gravitational force between the two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. It is given by the formula
<em> F = GMm/d² newton</em>
Where,
G - Universal gravitational constant
Substituting the given values,
F = 6.673 x 10⁻¹¹ x 100 x 10 / 5²
F = 2.6692 X 10⁻⁹ N
Hence, the force between the two bodies is, F = 2.6692 X 10⁻⁹ N
Answer:
I don't really understand the question but fire water air and like earth but you said 3
Explanation:
Answer:
The electric potential is approximately 5.8 V
The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero
Explanation:
The two protons can be considered as point charges. Therefore, the electric potential is given by the point charge potential:
(1)
where
is the charge of the particle,
the electric permittivity of the vacuum (I assuming the two protons are in a vacuum) and
is the distance from the point charge to the point where the potential is being measured. Because the electric potential is an scalar, we can simply add the contribution of the two potentials in the midpoint between the protons. Thus:

Substituting the values
,
and
we obtain:

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero.