In the given problem, we say various information's that are going to help us reach the ultimate answer to the question. Let us first write the information's that have been presented in front of us.
Mass of the car = 2000 kg
Velocity of the car = 25 m/s^2
Radius of the circle = 80 m
Now we already know the equation for calculating the centripetal force and that is
Centripetal Force = [mass * (velocity)^2]/Radius
= [2000 * (25)^2]/80
= (2000 * 625)/80
= 1250000/80
= 15625
So the centripetal force on the car is 15625 Newtons
At the bottom of the tank :
P = ρgH
P = (1000 kg/m³)(10 m/s²)(1 m)
P = 10000 N/m²
F = P • A
F = (10000 N/m²)(1 m²)
F = 10000 N
At the side of the tank :
Pav = ½ρgH
Pav = ½(1000 kg/m³)(10 m/s²)(1 m)
Pav = 5000 N/m²
F = P • A
F = (5000 N/m²)(1 m²)
F = 5000 N
Answer:
The length of her shadow is changing at the rate -2 m/s
Explanation:
Let the height oh the street light, h = 22 ft
Let the height of the woman, w = 5.5 ft
Horizontal distance to the street light = l
length of shadow = x
h/w = (l + x)/x
22/5.5 = (l + x)/x
4x = l + x
3x = l
x = 1/3 l
taking the derivative with respect to t of both sides
dx/dt = 1/3 dl/dt
dl/dt = -6 ft/sec ( since the woman is walking towards the street light, the value of l is decreasing with time)
dx/dt = 1/3 * (-6)
dx/dt = -2 m/s
Answer:
about 19.6° and 73.2°
Explanation:
The equation for ballistic motion in Cartesian coordinates for some launch angle α can be written ...
y = -4.9(x/s·sec(α))² +x·tan(α)
where s is the launch speed in meters per second.
We want y=2.44 for x=50, so this resolves to a quadratic equation in tan(α):
-13.6111·tan(α)² +50·tan(α) -16.0511 = 0
This has solutions ...
tan(α) = 0.355408 or 3.31806
The corresponding angles are ...
α = 19.5656° or 73.2282°
The elevation angle must lie between 19.6° and 73.2° for the ball to score a goal.
_____
I find it convenient to use a graphing calculator to find solutions for problems of this sort. In the attachment, we have used x as the angle in degrees, and written the function so that x-intercepts are the solutions.
<span>The electric force is given by:
F = [ k*(q1)*(q2) ] / d^2
F = Electric force
k = Coulomb's constant
q1 = Charge of one proton
q2 = Charge of second proton
d = Distance between centers of mass
Values:
F = unknown
k = 8.98E 9 N-m^2/C^2
q1 = 1.6E-19
q2 = 1.6E-19
d = 1.0E-15 m
Insert values into F = [ k*(q1)*(q2) ] / d^2
F = [ (8.98E 9 N-m^2/C^2) * (1.6E-19) * (1.6E-19) ] / (1.0E-15 m)^2
F = </span>229.888 N
answer
the electric force of repulsion between nuclear protons is 229.888 N