Let T1 and T2 be tension in ropes1 and 2 respectively.
<span>since system is stationary (equilibrium), considering both ropes + beam as a system </span>
<span>for horizontal equilibrium (no movement in that direction, so resultant force must be zero horizontally) </span>
<span>T1sin(20) = T2sin(30) </span>
<span>=> T1 = T2sin(30) / sin(20) </span>
<span>for vertical equilibrium, (no movement in this direction, so resultant force must be zero vertically) </span>
<span>T1cos(20) + T2cos(30) = mg </span>
<span>m = 900kg, substituting for T1 </span>
<span>T2sin(30)*cos(20)/sin(20) + T2cos(30) = 900g </span>
<span>2.328*T2 = 900*9.8 </span>
<span>T2 = 3788.65N </span>
<span>so T1 from (1) </span>
<span>T1 = 5535.21N</span>
So, I’m assuming that we’re treating light as a propagating wave.
Amplitude measures the amount of energy transported by a wave, thus amplitude squared is directly proportional to the light’s energy. The higher the amplitude, the higher the energy.
Energy is also directly proportional to the frequency of a wave, the higher the frequency, the higher the energy.
I took my second answer from the formula below:
E=cf
Answer:
It grows
Explanation:
The blacks holes will absorb
Me hoizontally stretching me like a noodle by the spaghtification process,thus growing bigger.
I would recommend, to include the scientific part of Newton's Laws of motion, with an example. Also, state how all three laws play a part in the activity. It seems like you just did the realistic part of it, swimming, now include how it happens with correct vocabulary. Good Luck!
Answer:
I think it is C.
Explanation:
I took a 12 question quiz in USA TP and made a 92%. It won't let me see which one I missed though.
Look up habitat fragmentation and think about how well it answers the question given.