The molar mass (atomic weight ) of sodium is 23.0 grams/mole and the molar mass of sodium azide, NaN3 , is the mass of sodium, 23.0 gram/mole added to the molar mass of three atoms of nitrogen (14.0 x 3 = 42 gram/mole) which equals 65.0 grams/mole. The percentage of sodium is 23.0 /65.0 x 100 % = 35 %
Answer: it will take 89.93secs
Explanation:Please see attachment for explanation
Answer:
35.9 ml
Explanation:
Start with the balanced equation:
3CuCl2(aq)+2Na3PO4(aq)→Cu3(PO4)2(s)+6NaCl(aq)
This tells us that 3 moles of CuCI2 react with 2 moles Na3PO4-
∴ 1 mole CuCl2 will react with 2/3 moles Na3PO4
We know that concentration = moles/volume i.e:
c= n/v
∴n=c×v
∴nCuCl2=0.107×91.01000=9.737×10−3
I divided by 1000 to convert ml to L
∴nNa3PO4=9.737×10−3×23=6.491×10−3
v=nc=6.491×10−30.181=35.86×10−3L
∴v=35.86ml
Answer:option A
Multiple reactants are used to form one product.
Answer:
d.3.0
Explanation:
Step 1: Calculate the final volume of the solution
The final volume is equal to the sum of the volumes of the initial HCl solution and the volume of distilled water.
V₂ = 100 mL + 100 mL = 200 mL
Step 2: Calculate the final concentration of HCl
We will use the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂ = 0.002 M × 100 mL/200 mL = 0.001 M
Step 3: Calculate the pH of the final HCl solution
Since HCl is a strong acid, [H⁺] = HCl. We will use the definition of pH.
pH = -log [H⁺] = -log 0.001 = 3