There is no graph but the reason people who have aids cant fight it off is because it is an immune disease it quickly weakens the immune system and makes a persons body too weak to fight anything off.
Answer:
4.35 atm
Explanation:
According to the information given;
- Initial volume of the gas, V₁ is 2.50 L
- Initial pressure of the gas is standard pressure P₁, normally 1 atm
- New volume of the gas, V₂ is 575 mL
We are required to determine the new pressure of the gas, P₂ ;
To answer the question, we are going to use the Boyle's law, that relates pressure and volume at constant temperature.
According to Boyle's law;
P₁V₁ = P₂V₂
Therefore, to determine the new pressure, P₂, we rearrange the formula;
New pressure, P₂ = P₁V₁ ÷ V₂
Thus;
P₂ = ( 1 atm × 2.50 L) ÷ 0.575 L
= 4.3478 atm
= 4.35 atm
Therefore, the new pressure of the gas is 4.35 atm
Answer:
The solution to the question is as follows
(a) The rate of ammonia formation = 0.061 M/s
(b) the rate of N₂ consumption = 0.0303 M/s
Explanation:
(a) To solve the question we note that the reaction consists of one mole of N₂ combining with three moles of H₂ to form 2 moles of NH₃
N₂(g) + 3H₂(g) → 2NH₃(g)
The rate of reaction of molecular hydrogen = 0.091 M/s, hence we have
3 moles of H₂ reacts to form 2 moles of NH₃, therefore
0.091 M of H₂ will react to form 2/3 × 0.091 M or 0.061 M of NH₃
Hence the rate of ammonia formation is 0.061 M/s
(b) From the reaction equation we have 3 moles of H₂ and one mole of N₂ being consumed at the same time hence
0.091 M of H₂ is consumed simultaneously with 1/3 × 0.091 M or 0.0303 M of N₂
Therefore the rate of consumption of N₂ = 0.0303 M/s
First of all write a balanced equation.
4Na + O2 -> 2Na2O
You are starting with a mass of sodium. You need to use sodium’s molar mass. Take this quantity times mole to mole ratio between sodium and sodium oxide to get moles of sodium oxide produced.
.141 moles of sodium oxide produced
Zinc will most likely react the fastest