Answer:
Explanation:
Since the block is at rest in an elevated position, we can assume that it only has potential energy.
U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.
Plug in known variables....
U=4kg*9.8m/s^2*20m
U=784 joules of potential energy or letter A.
Answer:
Explanation:
In the x direction the force will be
½(-w₀)L/2 = -¼w₀L
acting ⅔(L/2) = L/3 below the x axis.
In the y direction the force will be
½(-w₀)L + ½w₀L/2 = -¼w₀L
the magnitude of the resultant will be
F = w₀L √((-¼)² + (-¼)²) = w₀L√⅛
in the direction
θ = arctan(-¼w₀L / -¼w₀L) = 225°
to find the distance, we balance moments
(w₀L√⅛)[d] = ½(w₀)L[⅔L] + ¼w₀L[⅔L/2] - ¼w₀L[L - ⅓L/2]
(√⅛)[d] = ½ [⅔L] + ¼ [⅔L/2] - ¼ [L - ⅓L/2]
(√⅛)[d] = ½[⅔L] + ¼[⅔L/2] - ¼[L - ⅓L/2]
(√⅛)[d] = ⅓L + ⅟₁₂L - ¼L + ⅟₂₄L
(√⅛)[d] = 5L/24
d = 5L/24 / (√⅛)
d = 5√⅛L/3
I think the correct answer from the choices listed above is option A. The correct arrangement of the substances according to the <span>most to the least ordered particle arrangement should be wood, water and neon gas. Wood should be the first since it is solid which has the most ordered structure as compared to the liquid and a gas. The neon gas is the last since as a gas it has the least ordered structure.</span>
Answer:
My best guess would be B due to the fact of friction in a simple machine
Answer:
Half life of the sample, 
Given:
Initial amount, N = 1679
Final count of amount, N' = 1336
Time elapsed, t = 4 min = 240 s
Solution:
Now, To calculate the half life, using the relation:

Now, substituting the given values in the above mentioned formula:


Taking log on both the sides:
ln(0.796) = \frac{4}{t_{\frac{1}{2}}}ln(0.5)

