Answer:
(A) The period of its rotation is 0.5 s (2) The frequency of its rotation is 2 Hz.
Explanation:
Given that,
a ball is spun around in circular motion such that it completes 50 rotations in 25 s.
(1). Let T be the period of its rotation. It can be calculated as follows :

(2). Let f be the frequency of its rotation. It can be defined as the number of rotations per unit time. So,

Hence, this is the required solution.
Answer:
Answers can be seen below
Explanation:
First we must explain the essential when we clear equations, and that is that if the term we need to clear is accompanied by other terms that are being added up, then those terms go to the other side of the equation to subtract if those terms are subtracting, then they go to the other side to add, if those terms are found multiplying then they go to the other side of the equation to divide and if those other terms are found dividing then they go to the other side of the equation to multiply.
(Primero debemos explicar lo esencial cuando despejamos ecuaciones, y es que si el término que necesitamos despejar va acompañado de otros términos que se están sumando, entonces esos términos van al otro lado de la ecuación para restar si esos términos están restando, luego van al otro lado para sumar, si esos términos se encuentran multiplicando luego van al otro lado de la ecuación a dividir, y si esos términos se encuentran dividiendo, pasan al otro lado de la ecuación a multiplicar.)
1 )
; 
2)
; 
3)
; 
4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)
; 
15)

16)

meter, millimeters, kilometers. liters. kilograms. centimeters etc... look up the rest
The acceleration of the runner in the given time is 2.06m/s².
Given the data in the question;
Since the runner begins from rest,
- Initial velocity;

- Final velocity;

- Time elapsed;

Acceleration of the runner; 
<h3>Velocity and Acceleration</h3>
Velocity is the speed at which an object moves in a particular direction.
Acceleration is simply the rate of change of the velocity of a particle or object with respect to time. Now, we can see the relationship from the First Equation of Motion

Where v is final velocity, u is initial velocity, a is acceleration and t is time elapsed.
To determine the acceleration of the runner, we substitute our given values into the equation above.

Therefore, the acceleration of the runner in the given time is 2.06m/s².
Learn more about Equations of Motion: brainly.com/question/18486505