Answer: The empirical formula for the given compound is 
Explanation : Given,
Mass of O = 0.370 g
Mass of N = 0.130 g
To formulate the empirical formula, we need to follow some steps:
Step 1: Converting the given masses into moles.
Moles of Oxygen = 
Moles of Nitrogen = 
Step 2: Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.00928 moles.
For Oxygen = 
For Nitrogen = 
Step 3: Taking the mole ratio as their subscripts.
The ratio of O : N = 2 : 1
Hence, the empirical formula for the given compound is 
Answer:
It is pseudoscience because there are at least 118 known elements in nature.
Explanation:
Alchemy is an ancient branch of natural philosophy (not used much anymore).
I also just took the test and it's correct.
Answer:
In a chemical reaction, only the atoms present in the reactants can end up in the products. No new atoms are created, and no atoms are destroyed. In a chemical reaction, reactants contact each other, bonds between atoms in the reactants are broken, and atoms rearrange and form new bonds to make the products.
Explanation:
You would use this number, 6.02×1023 (Avogadro's number) to convert from particles, atoms, or molecules to moles. Whenever you go to the mole, divide by Avogadro's number. When you go to the unit from moles, multiply by Avogadro's number.
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW