1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
11

the axis of symmetry for a function in the form f(x)=x^2+4x-5 is x=-2. what are the coordinates of the vertex of the graph?

Mathematics
1 answer:
Alenkasestr [34]3 years ago
4 0
Hello : 
<span>f(x)=x²+4x-5
</span><span>The axis of symmetry for a function in the form f(x)=x^2+4x-5 is x=-2 :
</span>f(x) = (x+2)² + b 
f(x) x²+4x+4+b=  x² +4x-5 
 4+b= -5 
b = -9
the vertex is : (2 , -9)
You might be interested in
The measure of angle 4 is 120°, and the measure of angle 2 is 35°. What is the measure of angle 5?
pickupchik [31]

If this was a triangle, the answer would be 35 degrees. Can you plz show a graph if you have one though?

8 0
3 years ago
Read 2 more answers
Write a compound inequality to represent all of the numbers between -4 and 6.
blondinia [14]
-4 < 6
Negative number always less than positive number
4 0
4 years ago
Calculus 3 help please.​
Reptile [31]

I assume each path C is oriented positively/counterclockwise.

(a) Parameterize C by

\begin{cases} x(t) = 4\cos(t) \\ y(t) = 4\sin(t)\end{cases} \implies \begin{cases} x'(t) = -4\sin(t) \\ y'(t) = 4\cos(t) \end{cases}

with -\frac\pi2\le t\le\frac\pi2. Then the line element is

ds = \sqrt{x'(t)^2 + y'(t)^2} \, dt = \sqrt{16(\sin^2(t)+\cos^2(t))} \, dt = 4\,dt

and the integral reduces to

\displaystyle \int_C xy^4 \, ds = \int_{-\pi/2}^{\pi/2} (4\cos(t)) (4\sin(t))^4 (4\,dt) = 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt

The integrand is symmetric about t=0, so

\displaystyle 4^6 \int_{-\pi/2}^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \,dt

Substitute u=\sin(t) and du=\cos(t)\,dt. Then we get

\displaystyle 2^{13} \int_0^{\pi/2} \cos(t) \sin^4(t) \, dt = 2^{13} \int_0^1 u^4 \, du = \frac{2^{13}}5 (1^5 - 0^5) = \boxed{\frac{8192}5}

(b) Parameterize C by

\begin{cases} x(t) = 2(1-t) + 5t = 3t - 2 \\ y(t) = 0(1-t) + 4t = 4t \end{cases} \implies \begin{cases} x'(t) = 3 \\ y'(t) = 4 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{3^2+4^2} \, dt = 5\,dt

and

\displaystyle \int_C x e^y \, ds = \int_0^1 (3t-2) e^{4t} (5\,dt) = 5 \int_0^1 (3t - 2) e^{4t} \, dt

Integrate by parts with

u = 3t-2 \implies du = 3\,dt \\\\ dv = e^{4t} \, dt \implies v = \frac14 e^{4t}

\displaystyle \int u\,dv = uv - \int v\,du

\implies \displaystyle 5 \int_0^1 (3t-2) e^{4t} \,dt = \frac54 (3t-2) e^{4t} \bigg|_{t=0}^{t=1} - \frac{15}4 \int_0^1 e^{4t} \,dt \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} e^{4t} \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \frac54 (e^4 + 2) - \frac{15}{16} (e^4 - 1) = \boxed{\frac{5e^4 + 55}{16}}

(c) Parameterize C by

\begin{cases} x(t) = 3(1-t)+t = -2t+3 \\ y(t) = (1-t)+2t = t+1 \\ z(t) = 2(1-t)+5t = 3t+2 \end{cases} \implies \begin{cases} x'(t) = -2 \\ y'(t) = 1 \\ z'(t) = 3 \end{cases}

with 0\le t\le1. Then

ds = \sqrt{(-2)^2 + 1^2 + 3^2} \, dt = \sqrt{14} \, dt

and

\displaystyle \int_C y^2 z \, ds = \int_0^1 (t+1)^2 (3t+2) \left(\sqrt{14}\,ds\right) \\\\ ~~~~~~~~ = \sqrt{14} \int_0^1 \left(3t^3 + 8t^2 + 7t + 2\right) \, dt \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 t^4 + \frac83 t^3 + \frac72 t^2 + 2t\right) \bigg|_{t=0}^{t=1} \\\\ ~~~~~~~~ = \sqrt{14} \left(\frac34 + \frac83 + \frac72 + 2\right) = \boxed{\frac{107\sqrt{14}}{12}}

8 0
1 year ago
In the diagram below, trapezoid ABCD maps to trapezoid A’B’C’D’
snow_tiger [21]

Answer:

C'

Step-by-step explanation:

Given

ABCD to A'B'C'D'

Required

Corresponding angle of C

ABCD to A'B'C'D' means that the following angles are corresponding

A \to A'

B \to B'

C \to C'

D \to D'

Hence, C' corresponds to C

6 0
2 years ago
Read 2 more answers
Verifying Trig Functions
anzhelika [568]

Answer:

The answer to your question is below

Step-by-step explanation:

                csc α - cot α = \frac{sin \alpha }{1 + cos \alpha }

Work with the left part

                \frac{1}{sin\alpha } - \frac{cos \alpha }{sin \alpha}

Simplify

                \frac{1 - cos\alpha }{sin\alpha }

Multiply by the reciprocal

 \frac{1 - cos\alpha }{sin \alpha } x \frac{1 + cos\alpha }{1 + cos\alpha }                                  

Simplify

\frac{1 - cos^{2}\alpha}{sin\alpha (1 + cos\alpha)}

Remember that

                 sin²α = 1 -cos²α

Substitute the previous equation

\frac{sin^{2}\alpha }{sin\alpha(1 + cos\alpha ) }

Simplify

\frac{sin\alpha}{1 + cos \alpha}      

The identity i proved.            

5 0
3 years ago
Other questions:
  • Please help as soon as possible!
    6·1 answer
  • Tanisha and Rachel had lunch at the mall tanisha ordered three slices of pizza and two colas Rachel ordered two slices of pizza
    11·2 answers
  • Which scale would produce the smallest drawing? Explain your reasoning.
    13·1 answer
  • Which equation determines the proportion of ground squirrels alive at the start of year 1-2?
    11·1 answer
  • What is a the are of a sqeuar with sides of 7/8 ? Use a formula A = s2
    14·1 answer
  • A projectile is fired vertically upward, and its height s(t) in feet after t seconds is given by the function s(t)=-16t^2+600t+8
    9·1 answer
  • I need help with this. I do not understand it.
    11·2 answers
  • Find the measurement of x
    6·1 answer
  • Do You Know How?
    10·1 answer
  • What is the number 39.90<br>rounded off to one decimal<br>Place.​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!