1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
3 years ago
11

Ezra (m = 20.0 kg) has a tire swing and wants to swing as high as possible. He thinks that his best option is to run as fast as

he can and jump onto the tire at full speed. The tire has a mass of 10.0 kg and hangs 3.50 m straight down from a tree branch. Ezra stands back 10.0 m and accelerates to a speed of 3.62 m/s before jumping onto the tire swing. (a) How fast are Ezra and the tire moving immediately after he jumps onto the swing? m/s (b) How high does the tire travel above its initial height?
Physics
1 answer:
Dmitriy789 [7]3 years ago
3 0

Answer:

a) v=5.6725\,m.s^{-1}

b) h= 1.6420\,m

Explanation:

Given:

  • mass of the body, M=20\,kg
  • mass of the tyre,m=10\,kg
  • length of hanging of tyre, l=3.5m
  • distance run by the body, d=10m
  • acceleration of the body, a=3.62m.s^{-2}

(a)

Using the equation of motion :

v^2=u^2+2a.d..............................(1)

where:

v=final velocity of the body

u=initial velocity of the body

here, since the body starts from rest state:

u=0m.s^{-1}

putting the values in eq. (1)

v^2=0^2+2\times 3.62 \times 10

v=8.5088\,m.s^{-1}

Now, the momentum of the body just before the jump onto the tyre will be:

p=M.v

p=20\times 8.5088

p=170.1764\,kg.m.s^{-1}

Now using the conservation on momentum, the momentum just before climbing on the tyre will be equal to the momentum just after climbing on it.

(M+m)\times v'=p

(20+10)\times v'=170.1764

v'=5.6725\,m.s^{-1}

(b)

Now, from the case of a swinging pendulum we know that the kinetic energy which is maximum at the vertical position of the pendulum gets completely converted into the potential energy at the maximum height.

So,

\frac{1}{2} (M+m).v'^2=(M+m).g.h

\frac{1}{2} (20+10)\times 5.6725^2=(20+10)\times 9.8\times h

h\approx 1.6420\,m

above the normal hanging position.

You might be interested in
A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point ci
MA_775_DIABLO [31]

Answer:

v_B=3.78\times 10^5\ m/s

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is 6.63\times 10^{-27}\ kg

Speed of nucleus at A is v_A=6.2\times 10^5\ m/s

Potential at point A, V_A=1.5\times 10^3\ V

Potential at point B, V_B=4\times 10^3\ V

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s

So, the speed at point B is 3.78\times 10^5\ m/s.

7 0
3 years ago
Select all that apply.
murzikaleks [220]
D multiply force

Have a wonderful day !
8 0
3 years ago
Read 2 more answers
Paolo says that his bicycle is hard to pedal.Mia looks at the bicycle and tells him he needs to oil the chain.explain why oiling
laila [671]

Answer:

Less friction

Explanation:

Paolo's bike is too difficult to pedal because there is too much friction in the mechanisms of the bike. To reduce friction, Paolo must oil the chain. This will make the bike run much more smoothly and allow for easier pedalling.

6 0
2 years ago
A pendulum of length L is suspended from the ceiling of an elevator. When the elevator is at rest the period of the pendulum is
Juliette [100K]

Answer:

Explanation:

When the pendulum falls freely the net acceleration due to gravity is zero.

As we know that the time period of simple pendulum is inversely proportional to the square root of acceleration due to gravity, thus the time period becomes infinity.

6 0
3 years ago
What would happen to the moon if earth stopped exerting the force of gravity on it?
Mila [183]
There are two equal forces of gravity between the Earth and the Moon.
One force pulls the Moon toward the Earth.
The other force pulls the Earth toward the Moon.

If only this gravity suddenly switched off, then the moon would
continue to orbit the Sun, very much as it does now.

If ALL gravity suddenly switched off, then . . .

-- the Moon would stop orbiting the Earth and would sail away, in
a straight line and at the speed it had when gravity disappeared;

-- the Earth would stop orbiting the Sun and would sail away, in
a straight line and at the speed it had when gravity disappeared;

-- all the gases surrounding the Earth ... which we call "air" ... would
start drifting away, and expanding into a giant cloud of gas, and stop
being an atmosphere;

-- the Sun would completely fall apart, expand into a giant cloud of gas,
and stop being a star.
6 0
4 years ago
Read 2 more answers
Other questions:
  • Joanna has become good friends with Janna, whose name begins with the same letter as hers. They sit next to each other in three
    9·2 answers
  • The potential difference between two points, A and B, in an electric field is 2.00 volts. The energy required to move a charge o
    5·1 answer
  • Which of the following best describes a capacitor
    14·2 answers
  • When did you notice a greater elevation of blood pressure and pulse?
    9·1 answer
  • Which forces tend to slow down an object
    8·1 answer
  • If you increase the frequency of a sound wave four times what will happen to its speed
    13·2 answers
  • How can athletes promote social<br> justice?
    12·1 answer
  • If a distance-time graph contains the point (4, 15), what does that tell you about the runner?
    13·1 answer
  • Which of Newton’s laws, when combined algebraically with his law of universal gravitation, can be used to calculate Earth’s mass
    12·1 answer
  • Why do the stars appear to rotate around Polaris?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!