<span>Kinetic molecular theory.
</span>
The complete balanced chemical
equation is:
4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g)
In statement form: 4mol NH3 reacts with 5 mol O2 to produce 6
mol H2O
First let us find for the limiting reactant:
>molar mass NH3 = 17 g/mol
moles NH3 = 54/17 = 3.18 mol NH3
This will react with 3.18*5/4 = 3.97 mol O2
>molar mass O2 = 32g/mol
moles O2 = 54/32 = 1.69 mol O2
We have insufficient O2 therefore this is the limiting
reactant
From the balanced equation:
For every 5.0 mol O2, we get 6.0 mol H2O, therefore
moles H2O formed = 1.69
mol O2 * 6/5 = 2.025 mol
Molar mass H2O = 18g/mol
<span>mass H2O formed = 2.025*18 = 36.45 grams H2O produced</span>
Three complete orders on each side of the m=0 order can be produced in addition to the m = 0 order.
The ruling separation is
d=1 / (470mm −1) = 2.1×10⁻³ mm
Diffraction lines occur at angles θ such that dsinθ=mλ, where λ is the wavelength and m is an integer.
Notice that for a given order, the line associated with a long wavelength is produced at a greater angle than the line associated with a shorter wavelength.
We take λ to be the longest wavelength in the visible spectrum (538nm) and find the greatest integer value of m such that θ is less than 90°.
That is, find the greatest integer value of m for which mλ<d.
since d / λ = 538×10⁻⁹m / 2.1×10 −6 m ≈ 3
that value is m=3.
There are three complete orders on each side of the m=0 order.
The second and third orders overlap.
Learn more about diffraction here : brainly.com/question/16749356
#SPJ4
The alkali metals are first column, alkali earth 2nd, halogens 2nd to last, and noble gases last. Hope it helps!