Answer:
As solute concentration increases, vapor pressure decreases.
Step-by-step explanation:
As solute concentration increases, the number of solute particles at the surface of the solution increases, so the number of <em>solvent </em>particles at the surface <em>decreases</em>.
Since there are fewer solvent particles available to evaporate from the surface, the vapour pressure decreases.
C. and D. are <em>wrong</em>. The vapour pressure depends <em>only</em> on the number of particles. It does not depend on the nature of the particles.
If U-235 decays into Cs-135 and 4 neutrons, the other nuclide that will be produced is Rb-96 (option D).
<h3>What is radioactive decay?</h3>
A radioactive decay is the process by which an unstable large nuclei emit subatomic particles and disintegrate into one or more smaller nuclei.
According to this question, a radioactive material Uranium- 235 undergoes radioactive decay into Cs- 135 and 4 neutrons (1/0n).
This means that the mass of the products we have is 135 + 4 = 139.
The mass of the nuclide left must be 235 - 139 = 96, hence, the other nuclide that will be produced is Rb-96.
Learn more about radioactive decay at: brainly.com/question/1770619
#SPJ1
A) Cu
Cu + 2HCl --> CuCl2 + H2(g)
Products predicted: Copper(II) choloride and hydrogen gas
B) Mg
Mg + 2HCl --> MgCl2 + H2
Products predicted: magnesium chloride + hygrogen gas
C) Fe
Fe +2 HCl -> FeCl2 + H2, or
2Fe +6 HCl -> 2FeCl3 + 3H2
Products predicted: Iron(II) chloride, iron (III) chloride and hydrogen gas.