Answer:

Explanation:
<u>Dimensional Analysis</u>
It's given the relation between quantities A, B, and C as follows:

and the dimensions of each variable is:



Substituting the dimensions into the relation (the coefficient is not important in dimension analysis):

Operating:


Equating the exponents:


Adding both equations:

Solving:


Answer:

Density is defined as (mass) per unit (volume). So in order to calculate
the density of a glob of some substance, you pretty much have to measure
its mass and its volume.
Answer:
2. [B] = [L]/[T] and [C] = [L]/[T]
Explanation:
I assume you mean this:
A = B² + 2B⁴/C²
Since you can't add numbers with different units (for example, you can't add seconds to meters), each term in the sum must have the same units as A.
B² = [L]²/[T]²
B = [L]/[T]
B⁴/C² = [L]²/[T]²
C²/B⁴ = [T]²/[L]²
C² = B⁴ [T]²/[L]²
C² = ([L]/[T])⁴ [T]²/[L]²
C² = [L]²/[T]²
C = [L]/[T]
Notice we ignore the 2 coefficient, which is unitless.
A). nuclear
No. There were batteries long long before we learned
how to use nuclear energy. Also, there is no danger of
exposure to radioactivity when you're working with a battery.
b). mechanical
No. A battery has no moving parts.
c). gravitational
No. No matter how high you take a battery in an airplane, or
how far you lower it into a mine-shaft, its characteristics don't
change. In fact, batteries even work on things that are in orbit.
d). chemical
Bingo.