Answer:
Step-by-step explanation:
Solution by substitution method
3x+5y=7
and 4x-y=5
Suppose,
3x+5y=7→(1)
and 4x-y=5→(2)
Taking equation (2), we have
4x-y=5
⇒y=4x-5→(3)
Putting y=4x-5 in equation (1), we get
3x+5y=7
⇒3x+5(4x-5)=7
⇒3x+20x-25=7
⇒23x-25=7
⇒23x=7+25
⇒23x=32
⇒x=32/23
→(4)
Now, Putting x=32/23
in equation (3), we get
y=4x-5
⇒y=4(32/23)-5
⇒y=(128-115)/23
⇒y=13/23
∴y=13/23 and x=32/23
Answer:
The counting principle lets you multiply the number of options per category to find the total number of possible outcomes.
Step-by-step explanation:
So the first one.
Answer:
Step-by-step explanation:
In this particular case we have the following system of equations:
y
=
−
3
x
+
4
[
E
q
.
1
]
x
+
4
y
=
−
6
[
E
q
.
2
]
Substituting
[
E
q
.
1
]
in
[
E
q
.
2
]
:
x
+
4
(
−
3
x
+
4
)
=
−
6
Applying the distributive property on the left side:
x
−
12
x
+
16
=
−
6
Simplifying
:
−
11
x
=
−
22
Solving for
y
:
x
=
−
22
−
11
=
2
Substituting
x
=
2
in
[
E
q
.
1
]
:
y
=
−
3
(
2
)
+
4
=
−
2
Therefore
, the solutions are
x
=
2
and
y
=
−
2
Let A = {1, 2, 3, 4, 5}, B = {1, 3, 5, 7, 9, 11} and U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
SVETLANKA909090 [29]
Answer:
a
Step-by-step explanation:
a=(2,4)
c=(1,3,5)
d=(1,2,3,4,5,7,9)