Answer:
- <em>convert </em>the mixed fractions to improper fractions (where the numerator is greater than or equal to the denominator): multiply the whole number part by the fraction's denominator, add that to the numerator, write the result on top of the denominator.
- if the denominators are not the same, work out the common denominator and <em>rewrite </em>the fractions with the same denominators
- subtract by subtracting the numerators and writing the result over the denominator
- convert back to mixed fractions by dividing the numerator by the denominator, write down the whole number answer, write down the remainder above the denominator.
Example
![3\frac23-1\frac45](https://tex.z-dn.net/?f=3%5Cfrac23-1%5Cfrac45)
convert to improper fractions:
![\dfrac{3 \times 3+2}{3}-\dfrac{1 \times 5+4}{5}=\dfrac{11}{3}-\dfrac{9}{5}](https://tex.z-dn.net/?f=%5Cdfrac%7B3%20%5Ctimes%203%2B2%7D%7B3%7D-%5Cdfrac%7B1%20%5Ctimes%205%2B4%7D%7B5%7D%3D%5Cdfrac%7B11%7D%7B3%7D-%5Cdfrac%7B9%7D%7B5%7D)
common denominator = 3 × 5 = 15, so:
![\dfrac{11}{3}-\dfrac{9}{5}=\dfrac{11\times 5}{3\times 5}-\dfrac{9\times 3}{5\times 3}=\dfrac{55}{15}-\dfrac{27}{15}](https://tex.z-dn.net/?f=%5Cdfrac%7B11%7D%7B3%7D-%5Cdfrac%7B9%7D%7B5%7D%3D%5Cdfrac%7B11%5Ctimes%205%7D%7B3%5Ctimes%205%7D-%5Cdfrac%7B9%5Ctimes%203%7D%7B5%5Ctimes%203%7D%3D%5Cdfrac%7B55%7D%7B15%7D-%5Cdfrac%7B27%7D%7B15%7D)
subtract:
![\dfrac{55}{15}-\dfrac{27}{15}=\dfrac{55-27}{15}=\dfrac{28}{15}](https://tex.z-dn.net/?f=%5Cdfrac%7B55%7D%7B15%7D-%5Cdfrac%7B27%7D%7B15%7D%3D%5Cdfrac%7B55-27%7D%7B15%7D%3D%5Cdfrac%7B28%7D%7B15%7D)
convert back to mixed fractions:
![28 \div 15=1 \textsf{ remainder }13=1 \frac{13}{15}](https://tex.z-dn.net/?f=28%20%5Cdiv%2015%3D1%20%5Ctextsf%7B%20remainder%20%7D13%3D1%20%5Cfrac%7B13%7D%7B15%7D)
Answer:
Up to 36
Step-by-step explanation:
If she puts one pepper hot pepper in every basket she can make a total of 36 baskets