1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marizza181 [45]
2 years ago
5

can you find the lengths and area and type the correct code? Please remember to type in all caps with no space​

Mathematics
2 answers:
Yakvenalex [24]2 years ago
5 0

hahahahahahahahahahahahahahahahahaha

Fofino [41]2 years ago
4 0

Answer:

EGFB

Step-by-step explanation:

To find the lengths of PQ and RS, we can use the Pythagorean Theorem, becasue both triangles have right angles. Base x height equals the area of the rectangle, and base x height divided by 2 gets us the height of the triangle. Thus:

1. 233 meters

2. 21, 840 square meters

3. 241.87 meters

4. 12, 600 meters

Hope this helps.

You might be interested in
Does anybody know the answer to this ?​
melisa1 [442]

Answer:

Step-by-step explanation:

5 0
3 years ago
Calculate the length of ac to 1 decimal place
ElenaW [278]

Answer:

it would be in the 100eds place

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
11 = w - 12 solve the equation. What's the solution
Alinara [238K]
11 = w - 12

11 + 12 = w -12 + 12

w = 11 + 12

w = 23
3 0
3 years ago
Can someone help me with this? PLs i'm so confused!
barxatty [35]
1. E. sine\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{5}{13}

2. L. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{12}{13}

3. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{5}{12}

4. Y. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{5}{13}

5. W. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{12}{13}

6. tan\ B = \frac{b}{a} = \frac{adjacent}{opposite} = \frac{AC}{BC} = \frac{12}{5} = 2\frac{2}{5}

7. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{2}

8. W. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{\sqrt{3}}{2}

9. I. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}

10. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{2}

11. E. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{\sqrt{3}}{1} = \sqrt{3}

12. I. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}

13. U. sin\ A = \frac{a}{c} = \frac{hypotenuse}{opposite} = \frac{BC}{AB} = \frac{12}{15} = \frac{4}{5}

14. I. cos\A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{9}{15} = \frac{3}{5}

15. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{12}{9} = \frac{4}{3} = 1\frac{1}{3}

16. R. sin\ B = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{4}{\sqrt{65}} = \frac{4}{\sqrt{65}} * \frac{\sqrt{65}}{\sqrt{65}} = \frac{4\sqrt{65}}{65}

17. M. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{7}{4} = 1\frac{3}{4}

18. N. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{4}{7}

19. L. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{16}{34} = \frac{8}{17}

20. H. cos\ B = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \fac{AC}{AB} = \frac{30}{34} = \frac{15}{17}

21. tan\ B = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{16}{30} = \frac{8}{15}

22. O. sin\ A = \frac{a}{c} = \frac{opposite}{hypotenuse} = \frac{BC}{AB} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}

23. O. cos\ A = \frac{b}{c} = \frac{adjacent}{hypotenuse} = \frac{AC}{AB} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}

24. N. tan\ A = \frac{a}{b} = \frac{opposite}{adjacent} = \frac{BC}{AC} = \frac{1}{1} = 1
7 0
3 years ago
Find the mid point of points A (-8, -8) and B (-1, -3) graphically<br><br> its deltamath
Misha Larkins [42]

-4.5,-5.5

Step-by-step explanation:

-8-1/2 , -8-3/2

=-4.5 , -5.5 (midpoint)

7 0
2 years ago
Other questions:
  • Brennan took a total of 16 pages of notes during 8 hours of class. After attending 10 hours of class, how many total pages of no
    14·1 answer
  • What is the common difference, d, of the sequence?
    10·2 answers
  • Evaluate the<br>expression:<br>2,322 - 27​
    15·2 answers
  • The equation for distance is d= st. if a car has a speed of 35 m/s for 15 seconds, how far does it go ?
    5·1 answer
  • Hi. Could you please help me with this question??
    9·1 answer
  • Please guys help me with this. I will give you brainliest. please ❤❤​
    8·2 answers
  • 1 3/7 x 2 3/4<br> fraction plz
    5·1 answer
  • 8th grade math, please help.<br> I’ll give you brainliest if you want.<br><br> -Find the volume-
    13·2 answers
  • Suzannes school are painting a rectangular mural outside the buillding that will be 15 feet by 45 feet the students are also goi
    10·1 answer
  • I have this question that i dont get plz help-2|2.2x-3.3|=-6.6
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!