Malleability described the property of physical deformation under some compressive stress; a malleable material could, for example, be hammered into thin sheets. Malleability is generally a property of metallic elements: The atoms of elemental metals in the solid state are held together by a sea of indistinguishable, delocalized electrons. This also partially accounts for the generally high electrical and thermal conductivity of metals.
In any case, only one of the elements listed here is a metal, and that’s copper. Moreover, the other elements (hydrogen, neon, and nitrogen) are gases under standard conditions, and so their malleability wouldn’t even be a sensible consideration.
Answer:
Isotope, one of two or more species of atoms of a chemical element with the same atomic number and position in the periodic table and nearly identical chemical behaviour but with different atomic masses and physical properties.
Cost per mole
Table salt : Rs 0.878
Table sugar : Rs 23.63
<h3>Further explanation</h3>
Given
Cost table salt (NaCl) = 15/kg
Cost table sugar(sucrose-C12H22O11) = 69/kg
Required
cost per mole
Solution
mol of 1 kg Table salt(NaCl ,MW= 58.5 g/mol) :

mol of 1 kg Table sugar(C12H22O11 ,MW= 342 g/mol) :

Procaryotic structural components consist of macromolecules such as DNA, RNA, proteins, polysaccharides, phospholipids, or some combination thereof. The macromolecules are made up of primary subunits such as nucleotides, amino acids and sugars (Table 1). It is the sequence in which the subunits are put together in the macromolecule, called the primary structure, that determines many of the properties that the macromolecule will have. Thus, the genetic code is determined by specific nuleotide base sequences in chromosomal DNA; the amino acid sequence in a protein determines the properties and function of the protein; and sequence of sugars in bacterial lipopolysaccharides determines unique cell wall properties for pathogens. The primary structure of a macromolecule will drive its function, and differences within the primary structure of biological macromolecules accounts for the immense diversity of life.
Explanation:
Lead(II) phosphate is an ionic compound with chemical formula Pb3(PO4)2. Lead(II) phosphate is a long-lived electronically neutral reagent chemical.[1] Despite limited tests on humans, it has been identified as a carcinogen based on tests on animals conducted by the EPA.[2] Lead(II) phosphate appears as hexagonal, colorless crystals or as a white powder. Lead(II) phosphate is insoluble in water and alcohol but soluble in Nitric acid (HNO3) and has fixed alkali hydroxides. When lead(II) phosphate is heated for decomposition it emits very toxic fumes containing Lead (Pb) and POx.[3]