In order to answer this, we mus know the data for the heat of combustion of propane. This is an empirical data that you can search online. The heat of combustion is -2220 kJ/mol. The molar mass of propane of 44.1 g/mol. The solution is as follows:
ΔH = -2220 kJ/mol (1 mol/44.1 g)(1000g/1kg)(20 kg)
<em>ΔH = -1006802.721 kJ or -1 GJ</em>
a. 34 mL; b. 110 mL
a. A tablet containing 150 Mg(OH)₂
Mg(OH)₂ + 2HCl ⟶ MgCl₂ + 2H₂O
<em>Moles of Mg(OH)₂</em> = 150 mg Mg(OH)₂ × [1 mmol Mg(OH)₂/58.32 mg Mg(OH)₂
= 2.572 mmol Mg(OH)₂
<em>Moles of HCl</em> = 2.572 mmol Mg(OH)₂ × [2 mmol HCl/1 mmol Mg(OH)₂]
= 5.144 mmol HCl
Volume of HCl = 5.144 mmol HCl × (1 mmol HCl/0.15 mmol HCl) = 34 mL HCl
b. A tablet containing 850 mg CaCO₃
CaCO₃ + 2HCl ⟶ CaCl₂ + CO₂ + H₂O
<em>Moles of CaCO₃</em> = 850 mg CaCO₃ × [1 mmol CaCO₃/100.09 mg CaCO₃
= 8.492 mmol CaCO₃
<em>Moles of HCl</em> = 8.492 mmol CaCO₃ × [2 mmol HCl/1 mmol CaCO₃]
= 16.98 mmol HCl
Volume of HCl = 16.98 mmol HCl × (1 mL HCl/0.15 mmol HCl) = 110 mL HCl
Answer:
The final volume of the gas is 36.1 L.
Explanation:
Given:
Initial pressure of the gas is, 
Final pressure of the gas is, 
Initial volume of the gas is, 
Final volume of the gas is, 
Here, we shall use Boyle's Law which states that for a process under constant temperature, the pressure of the gas changes inversely with the change in volume.
Here, the pressure is increased. So, the volume of the gas is decreased.
Therefore, as per Boyle's Law:

So, the final volume of the gas is 36.1 L.
There would be 0 Potential energy, which eliminates A. There would be Spring energy, which eliminates C. So B and D are your 2 choices. Since the child is not moving just before the jump, there would be 0 Kinetic energy. So D.
Table slat has a low melting pointy while mercury has a high one
<span />