Each correspond to a principal energy level
Answer:
A
Explanation:
CH4+O2-CO2+ H20
that mean methane has burn in oxygen to produce CO2
Answer: 502 Joules
Explanation:
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 40.0 mL
Putting values in above equation, we get:

When metal is dipped in water, the amount of heat released by lead will be equal to the amount of heat absorbed by water.

The equation used to calculate heat released or absorbed follows:

q = heat absorbed by water
= mass of water = 40.0 g
= final temperature of water = 20.0°C
= initial temperature of water = 17.0°C
= specific heat of water= 4.186 J/g°C
Putting values in equation 1, we get:
![q=40.0\times 4.186\times (20.0-17.0)]](https://tex.z-dn.net/?f=q%3D40.0%5Ctimes%204.186%5Ctimes%20%2820.0-17.0%29%5D)

Hence, the joules of heat were re-leased by the lead is 502
Answer:
We could do two 1:50 dilutions and one 1:4 dilutions.
Explanation:
Hi there!
A solution that is 1000 ug/ ml (or 1000 mg / l) is 1000 ppm.
Knowing that 1 ppm = 1000 ppb, 100 ppb is 0.1 ppm.
Then, we have to dilute the stock solution (1000 ppm / 0.1 ppm) 10000 times.
We could do two 1:50 dilutions and one 1:4 dilutions (50 · 50 · 4 = 10000). Since the first dilution is 1:50, you will use the smallest quantity of the stock solution (if we use the 10.00 ml flask):
First step (1:50 dilution):
Take 0.2 ml of the stock solution using the third dispenser (20 - 200 ul), and pour it in the 10.00 ml flask. Fill with water to the mark (concentration : 1000 ppm / 50 = 20 ppm).
Step 2 (1:50 dilution):
Take 0.2 ml of the solution made in step 1 and pour it in another 10.00 ml flask. Fill with water to the mark. Concentration 20 ppm/ 50 = 0.4 ppm)
Step 3 (1:4 dilution):
Take 2.5 ml of the solution made in step 3 (using the first dispenser 1 - 5 ml) and pour it in a 10.00 ml flask. Fill with water to the mark. Concentration 0.4 ppm / 4 = 0.1 ppm = 100 ppb.
Answer:
D. H₂SO₄
Explanation:
Bronsted acids are those that donate H+ ions. In this question, H₂SO₄ is a Bronsted acid.
Note: H₂SO₄ is one of seven strong acids that you should try to memorize.