The number of atoms in one mole of any substance is measured by Avogadro's number. The value of Avogadro's number is 6.023 x 10 ^23. It is named after scientist Avogadro who proposed this number. 12 grams of carbon-12 represents 1 mole of carbon-12. For this reason, the number of atoms present in 1 mole of any substance is 6.023 x 10 ^23. Therefore, the number of atoms present in 1 mole carbon-12 is 6.023 x 10^23.
(Answer) This unit is the number of atoms in 12 grams of carbon-12 and known as Avogadro's number.
Answer:
2.6 ×10^-42
Explanation:
From
∆G= -RTlnK
∆G= -237.2 KJmol-1 or -237.2×10^3 Jmol-1
R= 8.314 Jmol-1K-1
T= 25°C + 273= 298K
-237.2×10^3= 8.314 × 298 × ln K
ln K= -237.2×10^3/2477.572
K = 2.6 ×10^-42
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.
Answer: Correct name will be is aluminum bromide
Explanation:
In a molecular formula ,
Aluminium atoms present = 1
Bromine atoms present = 3
Charge on aluminium is +3 and charge on bromine is -1.
While naming:
- Name of the cation is written first. Simple name of the element is written
- After name of cation name of an anions written with suffix 'ide' in the end.
So, the name of
will be aluminium bromide.
Answer:
The reason for covering the container is to make sure that the atmosphere in the beaker is saturated with solvent vapour. Saturating the atmosphere in the beaker with vapour stops the solvent from evaporating as it rises up the paper.