ANSWER:
- Transported by blood picked up in the alveoli
- Pumped to cells by ventricles
Hope this helps! :)
Answer:
<em>The internal resistance of an ideal ammeter will be zero since it should allow current to pass through it. Voltmeter measures the potential difference, it is connected in parallel. .</em>
Explanation:
<h3>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em>!</em></h3>
Answer:
1. -8.20 m/s²
2. 73.4 m
3. 19.4 m
Explanation:
1. Apply Newton's second law to the car in the y direction.
∑F = ma
N − mg = 0
N = mg
Apply Newton's second law to the car in the x direction.
∑F = ma
-F = ma
-Nμ = ma
-mgμ = ma
a = -gμ
Given μ = 0.837:
a = -(9.8 m/s²) (0.837)
a = -8.20 m/s²
2. Given:
v₀ = 34.7 m/s
v = 0 m/s
a = -8.20 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx
Δx = 73.4 m
3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.
d = v₀t
d = (34.7 m/s) (0.56 s)
d = 19.4 m
Answer:
The distance represents the difference of the first position and last position of the body.
Explanation:
For example, if y axis represents the position axis, and the first position is 3, second 9 we can see that the distance is a (positive) projection of one position into another. 9-3=6
Hope this helps.
Explanation:
The given data is as follows.
Length of beam, (L) = 5.50 m
Weight of the beam, (
) = 332 N
Weight of the Suki, (
) = 505 N
After crossing the left support of the beam by the suki then at some overhang distance the beam starts o tip. And, this is the maximum distance we need to calculate. Therefore, at the left support we will set up the moment and equate it to zero.

= 0
x = 
= 
= 0.986 m
Hence, the suki can come (2 - 0.986) m = 1.014 from the end before the beam begins to tip.
Thus, we can conclude that suki can come 1.014 m close to the end before the beam begins to tip.