Answer:
M = 1433.5 kg
Explanation:
This exercise is solved using the Archimedean principle, which states that the hydrostatic thrust is equal to the weight of the desalinated liquid,
B = ρ g V
with the weight of the truck it is in equilibrium with the push, we use Newton's equilibrium condition
Σ F = 0
B-W = 0
B = W
body weight
W = M g
the volume is
V = l to h
rho_liquid g (l to h) = M g
M = rho_liquid l a h
we calculate
M = 1000 4.7 6.10 0.05
M = 1433.5 kg
Malleus, incus, and stapes, respectively, and collectively, as "middle ear ossicles<span>".</span>
Newton’s first law of motion, also called the law on inertia, states that an object continues in its state of rest or of uniform motion unless compelled to change that state by an external force.Newton’s second law of motion states that if a net force acts on an object, it will cause an acceleration of that object.Newton’s third law of motion<span> states that for every action there is an equal and opposite reaction. hope this wasnt two long!</span>
Answer:
The ladder is 3.014 m tall.
Explanation:
To solve this problem, we must use the following formula:
v = x/t
where v represents the woman’s velocity, x represents the distance she climbed (the height of the ladder), and t represents the time it took her to move this distance
If we plug in the values we are given for the problem, we get:
v = x/t
2.20 = x/1.37
To solve this equation for x (the height of the ladder), we must multiply both sides by 1.37. If we do this, we get:
x = (2.20 * 1.37)
x = 3.014 m
Therefore, the ladder is 3.014 m tall.
Hope this helps!
Answer:
C and D
Explanation:
But really, You should be able to answer this with the tech knowledge of a tomato. You're given four answers, and are to choose which two are explain the reliability of digital storage.
The first two describe bad nasty things, the second two describe beneficial things.
So logically....