1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8090 [49]
2 years ago
6

If Frequency F, velocity v, and density D are considered fundamental units, the dimensional formula for momentum will be :

Physics
2 answers:
rewona [7]2 years ago
7 0

Answer:

<u>(Frequency)⁻³(velocity)⁴Density</u>

Explanation:

See attachments.

gizmo_the_mogwai [7]2 years ago
5 0

Let's see

Momentum be P

\\ \rm\Rrightarrow P=[Frequency]^a[velocity]^b[Density]^c

\\ \rm\Rrightarrow [P]=[F]^a[v]^b[D]^c

\\ \rm\Rrightarrow [M^1L^1T^{-1}]=[T^{-1}]^a[L^1T^{-1}]^b[M^1L^{-3}]^c

\\ \rm\Rrightarrow MLT^{-1}=T^{-a}L^bT^{-b}M^cL^{-3c}

\\ \rm\Rrightarrow MLT^{-1}=T^{-a-b}L^{b-3c}M^c

On comaparing

  • c=1

So

  • b-3c=1
  • b-3=1
  • b=1+3
  • b=4

and

  • -a-b=-1
  • -a-4=-1
  • -a=-1+4=3
  • a=-3

So the unit is

  • DV⁴/F³
You might be interested in
A water droplet falling in the atmosphere is spherical. Assume that as the droplet passes through a cloud, it acquires mass at a
ArbitrLikvidat [17]

Answer:

it b

Explanation:

bc A water droplet falling in the atmosphere is spherical

4 0
2 years ago
A substance with a pH of 4.0 will
eimsori [14]
PH of 4 is Acidic and its property is to turn blue litmus red
5 0
3 years ago
Read 2 more answers
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
3 years ago
Quick puzzle question. If god created the universe who created god?
mrs_skeptik [129]

Answer:

My mom always told me he was just there

Explanation:

4 0
3 years ago
Read 2 more answers
HELP NEED AN A PLEASE
Lunna [17]
If im not mistaking its the last one slowing heat transfer from the inside to the outside of the container
7 0
3 years ago
Read 2 more answers
Other questions:
  • Represent 7468 N with SI units having an appropriate prefix. Express your answer to four significant figures and include the app
    6·1 answer
  • The British attempted to break the land-speed record and the sound barrier using a jet-powered car. They made their attempt in t
    7·2 answers
  • A diver shines a flashlight upward from beneath the water (n = 1.33) at a 32.7° angle to the vertical. At what angle does the li
    14·1 answer
  • A cruise ship is moving at constant speed through the water. The vacationers on the ship are eager to arrive at their next desti
    12·1 answer
  • Which special effects technique is being used in television weather reports in which meteorologists stand in front of moving map
    6·2 answers
  • Which type of heating system is often used to heat many buildings from a central location
    12·1 answer
  • What happens when a force exerted on an object cause the object to move?
    7·2 answers
  • The velocity of the transverse waves produced by an earthquake is 5.09 km/s, while that of the longitudinal waves is 8.5512 km/s
    12·1 answer
  • The key differences between rotational kinematics and translational kinematics is: A. Rotational kinematics must specify an axis
    7·1 answer
  • Can anyone please explain this point with an example. I have presentation tomorrow.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!