A CH compound is combusted to produce CO2 and H2O
CnHm + O2 -----> CO2 + H2O
Mass of CO2 = 23.1g
Mass of H2O = 10.6g
Calculate by mass of the compounds
For Carbon C, divide by molecular weight of CO2 and multiply with Carbon
molecular weight. So C in grams = 23.1 x (12.01 / 44.01) = 6.3 g C
For Hydrogen H, divide by molecular weight of H2O and multiply with Hydrogen molecular weight. So H in grams = 10.6 x (2.01 / 18.01) = 0.53 g C
= 1.18 of H
Calculate the moles for C and H
6.3 grams of C x (1 mole/12.01 g C) = 0.524 moles of C
1.18 grams of H x (1 mole/1.008 g H) = 1.17 moles of H
Divides by both mole entities with smallest
C = 0.524 / 0.524 = 1 x 4 = 4
H = 1.17 / 0.524 = 2.23 x 4 = 10
The empirical formula is C4H10.
Molarity (concentration) can be calculated by the equation:
Concentration = moles / volume in L = 0.54 mol / 0.6 L = 0.9 M
Hope this helps!
Answer is: The atomic size of the chlorine ion is larger than the size of the chlorine atom.
Covalent radii of chlorine atom (Cl) is 0.099 nm and ionic radii of chlorine anion (Cl⁻) is 0.181 nm.
Difference between an chlorine atom and chlorine anion is the number of electrons that surround the nucleus.
Chlorine atom has 17 electrons and chlorine anion has 18 electrons.
Answer:
The solution is 50 %wt
Explanation:
50% wt is a sort of concentration and means, that 50 g of solute (in this case, the potassium bromide) dissolved in 100 g of water.
It is the same to say, that there are 50g of KBr for every 100g of H₂O