Answer :
The concentration of
before any titrant added to our starting material is 0.200 M.
The pH based on this
ion concentration is 0.698
Explanation :
First we have to calculate the concentration of
before any titrant is added to our starting material.
As we are given:
Concentration of HBr = 0.200 M
As we know that the HBr is a strong acid that dissociates complete to give hydrogen ion
and bromide ion
.
As, 1 M of HBr dissociates to give 1 M of 
So, 0.200 M of HBr dissociates to give 0.200 M of 
Thus, the concentration of
before any titrant added to our starting material is 0.200 M.
Now we have to calculate the pH based on this
ion concentration.
pH : It is defined as the negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Thus, the pH based on this
ion concentration is 0.698
Electronegativity
Atomic radius
Ionization energy
Answer:
Nonbonding pairs of electrons.
Explanation:
Both oxygen atoms in the diatomic molecule have two nonbonding pairs. This results in the oxygen molecule having a planar geometric shape. This is because nonbonding pairs repel each other are significant in determining the shape of a molecule.
is most abundant and 6310 times more than HF.
<h3>What is a strong and weak acid?</h3>
When an acid is dissolved in water, all of its molecules disintegrate, making the acid powerful.
When an acid is dissolved in water, only a small number of its molecules disintegrate, making the acid weak. Strong acids have a lower pH than weak acids.
The powerful acids include perchloric acid, chloric acid, nitric acid, sulfuric acid, hydrobromic acid, and hydroiodic acid.
Given:
Pka=3..2
pH=7
Let the volume be 1 liter
[HF]=01 M

Now,

F-:HF= 6309.57:1
Therefore, the most abundant is
and has 6310 times more than HF is
.
To know more about strong and weak acids, visit: brainly.com/question/12811944
#SPJ4
You can make 0.288 L of 4M solution using 100g of lithium bromide