With the use of the formula SinФ = nλ / d, there are 16 spectral orders which can be seen when it is illuminated by white light.
Given that a grating has 2000 slits/cm. That is,
d = 0.01 / 2000
d = 5 x
m
The wavelength λ = (700 - 400) nm
λ = 300 x
m
To calculate how many full spectral orders that can be seen (400 to 700 nm) when it is illuminated by white light, we will use the below formula
SinФ = nλ / d
Φ =
(nλ / d)
When n = 1
Φ =
(300 x
/ 5 x
)
Φ = 3.4 degrees
when n = 2
Φ =
(2 x 300 x
/ 5 x
)
Ф = 6.9 degrees
When n = 3
Ф =
(3 x 300 x
/ 5 x
)
When n = 16
Ф =
(16 x 300 x
/ 5 x
)
Ф =
(0.96)
Ф = 73.7 degrees
when n = 17
Ф =
(17 x 300 x
/ 5 x
)
Ф =
(1.05)
Ф = Error ( that is, it does not exist)
Therefore, there are 16 spectral orders which can be seen when it is illuminated by white light.
Learn more about double slit here: brainly.com/question/4449144
I believe it would be orthoclase feldspar, quartz, micas, and amphiboles are the most abundant in granite.<span />
Elements to the left tend to form positive ions is the right answer mark me brainlist
Hi, thank you for posting your question here at Brainly.
This problem could be solved using this equation:
Diffraction limit = 1.22*wavelength/diameter
diameter = 0.8 cm = 0.008 m
wavelength = 500E-9 m
Diffraction limit = 1.22(500E-9)/0.008
Diffraction limit = 0.00007625