Alike because they both act on the quarks making up the nucleons and they have very short ranges. The Strong Nuclear Force is an attractive force between protons and neutrons that keep the nucleus together and the Weak Nuclear Force is responsible for the radioactive decay of certain nuclei. Which also makes them very different
... find length
(way 1) determine acceleration using force
only force act on skier is mg vertically. spilt vector we get force along the incline = mgsin(10) and f= ma so
ma = mgsin(10) or a = gsin(10)
a (along the incline)= gsin(10) = 10sin(10) = 1.74
v^2 = u^2 + 2as
15^2 = 3^2 + 2(1.74)s
s = 62.06 m
(way 2) using conservation of energy
energy (KE+PE) on top = energy at bottom
0.5m3^2 + mgh = 0.5m15^2 +0
h (height of incline) = (112.5 - 4.5)/10 = 19.8 m
length of incline = h/sin(10) = 62.2 m ; trigonometry
... find time
s = (u+v)t/2
t = 2s/(u+v) = 2(62.2)/(3+15) = 6.91 s
Answer:
1. 12 V
2a. R₁ = 4 Ω
2b. V₁ = 4 V
3a. A = 1.5 A
3b. R₂ = 4 Ω
4. Diagram is not complete
Explanation:
1. Determination of V
Current (I) = 2 A
Resistor (R) = 6 Ω
Voltage (V) =?
V = IR
V = 2 × 6
V = 12 V
2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:
Voltage (V) = 12 V
Current (I) = 1 A
Equivalent resistance (R) =?
V = IR
12 = 1 × R
R = 12 Ω
a. Determination of R₁
Equivalent resistance (R) = 12 Ω
Resistor 2 (R₂) = 8 Ω
Resistor 1 (R₁) =?
R = R₁ + R₂ (series arrangement)
12 = R₁ + 8
Collect like terms
12 – 8 =
4 = R₁
R₁ = 4 Ω
b. Determination of V₁
Current (I) = 1 A
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 1 × 4
V₁ = 4 V
3a. Determination of the current.
Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) = 6 V
Current (I) =?
V₁ = IR₁
6 = 4 × I
Divide both side by 4
I = 6 / 4
I = 1.5 A
Thus, the ammeter (A) reading is 1.5 A
b. Determination of R₂
We'll begin by calculating the voltage cross R₂. This can be obtained as follow:
Total voltage (V) = 12 V
Voltage 1 (V₁) = 6 V
Voltage 2 (V₂) =?
V = V₁ + V₂ (series arrangement)
12 = 6 + V₂
Collect like terms
12 – 6 = V₂
6 = V₂
V₂ = 6 V
Finally, we shall determine R₂. This can be obtained as follow:
Voltage 2 (V₂) = 6 V
Current (I) = 1.5 A
Resistor 2 (R₂) =?
V₂ = IR₂
6 = 1.5 × R₂
Divide both side by 1.5
R₂ = 6 / 1.5
R₂ = 4 Ω
4. The diagram is not complete
Hey there!
In a gas state, particles have lots of energy, so they move around very rapidly, hitting each other and flowing around, that's why you see them moving so freely. Because they have so much energy, the substance is likely to be harder, as it can obtain more thermal energy, or heat.
Hope this helps!
Answer:
Three long wires are connected to a meter stick and hang down freely. Wire 1 hangs from the 50-cm mark at the center of the meter stick and carries 1.50 A of current upward. Wire 2 hangs from the 70-cm mark and carries 4.00 A of current downward. Wire 3 is to be attached to the meterstick and to carry a specific current, and we want to attach it at a location that results ineach wire experiencing no net force.
(a) Determine the position of wire 3.
b) Determine the magnitude and direction of current in wire 3
Explanation:
a) 

position of wire = 50 - 1.2
= 48.8cm
b) 

Direction ⇒ downward