Answer:
Partial Pressure of F₂ = 1.30 atm
Partial pressure of Cl₂ = 0.70 atm
Explanation:
Partial pressure for gases are given by Daltons law.
Total pressure of a gas mixture = sum of the partial pressures of individual gases
Pt = P(f₂) + P(cl₂)
Partial pressure = mole fraction × total pressure
Let the mass of each gas present be m
Number of moles of F₂ = m/38 (molar mass of fluorine = 38 g/Lol
Number of moles of Cl₂ = m/71 (molar mass of Cl₂)
Mole fraction of F₂ = (m/38)/((m/38) + (m/71)) = 0.65
Mole fraction of Cl₂ = (m/71)/((m/38) + (m/71)) = 0.35 or just 1 - 0.65 = 0.35
Partial Pressure of F₂ = 0.65 × 2 = 1.30 atm
Partial pressure of Cl₂ = 0.35 × 2 = 0.70 atm
Answer:
12N
Explanation:
Suppose the string mass is negligible, the total mass of the 2 block system is 6 + 9 = 15 kg
So the acceleration of the system when subjected to 30N force is
a = F / M = 30 / 15 = 2 m/s2
So both blocks would have the same acceleration, however, the force acting on the 6kg block would have a magnitude of
f = am = 2 * 6 = 12N
This is the tension in the string between the blocks
Answer: the wall contracts the force exerted by his head. The wall produces the opposite force which is equal to the force his head bangs the wall with.
Explanation: if his head exerts a much greater force than the wall can counteract the wall will be destroyed, if the wall exerts a much greater force than his head exerts he will be pushed far back and might even suffer a broken head.
The wall in this case provides the opposite reactive force.