Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
Answer:
When you exert a force on a baseball, there exists an equal and opposite force on the ball therefore, the ball will accelerate in opposite direction.
Explanation:
When you hit a ball with baseball bat, the bat exerts a great force on the ball which causes the ball to accelerate in the opposite direction. It is to be noted that the mass of bat is much greater than mass of ball but the acceleration of ball is also greater than the acceleration of the bat so both bat and ball almost exert same magnitude of force but in opposite direction and as a result both bat and ball accelerate in opposite direction, the deciding factor is of course the relative force applied by the batter and the bowler.
Answer:
≈ 22¢
Explanation:
240 / 1000 = 0.240 kV
0.240 kV(2.5 A)(3 hr) = 1.8 kW•hr
1.8 kW•hr($0.12/kW•hr) = $0.216
Initially there were 10 bulbs of 60 Watt power
So total power of all bulbs = 60 * 10 = 600 W
now each bulb used for 4 hours daily
so total energy consumed daily



now we have total power consumed in 1 year

cost of electricity = 10 cents/ kWh
so total cost of energy for one year

Now if all 60 Watt bulbs are replaced by 30 Watt bulbs
So total power of all bulbs = 30 * 10 = 300 W
now each bulb used for 4 hours daily
so total energy consumed daily



now we have total power consumed in 1 year

cost of electricity = 10 cents/ kWh
so total cost of energy for one year

total money saved in 1 year
