1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastova [34]
4 years ago
10

Raspuns rapid !!!! Matematica clasa a 5a.

Mathematics
1 answer:
Zigmanuir [339]4 years ago
3 0

 

U(1)=1\\U(1\times2)=2\\U(1\times2\times3)=6\\U(1\times2\times3\times4)=U(24)=4\\U(1\times\boxed{2}\times3\times4\times\boxed{5})=0 \text{ because of } 2\times5=10\\U(1\times\boxed{2}\times3\times4\times\boxed{5}\times6)=0 \text{ because of } 2\times5=10\\....................\\....................\\U(1\times\boxed{2}\times3\times4\times\boxed{5}\times6\times...\times2019)=0 \text{ because of } 2\times5=10

 

\implies~U(1+1\times2+1\times2\times3+1\times2\times3\times4+...+1\times2\times3\times....\times2019)=\\=U(1+1\times2+1\times2\times3+1\times2\times3\times4) = ~~~\text{(The others terms have U = 0)}\\=U(1+2+6+24)=U(33)=\boxed{\bf3}

 

 

You might be interested in
What are the first three terms of the sequence: a1 = 3 and an = 2(an -1)^2?. . a. 2, 8, 18. . b. 3, 18, 648. . c. 3, 32, 50. . d
AlexFokin [52]
The first term of the sequence is already given to be 3. Use this value to obtain the second term.
                                     a2 = 2(a1)^2 = 2(3)² = 18
Use the value of the second term to get the third term through the equation,
                                     a3 = 2(a2)² = 2(18)² = 648
Thus, the answer to this item is letter B. 
7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
4 years ago
What does the slope of graph show about the Hardware stores selling price for the rope?
SashulF [63]

Answer:

If the price is increasing or decreasing

Step-by-step explanation:

The slope is a visual representation of the cost over time.

3 0
2 years ago
Read 2 more answers
Best Answer Gets Brainliest Please help asap
FrozenT [24]
<h2>Answer:</h2>

[1] Area of base = 13 × 13 = 169in².

Area of faces = 4 (1/2 × 13 × 8) = 208in².

Surface area = (169 + 208)in² = 377in².

[2] Area of base = 1/2 × 5.2 × 4.5 = 11.7in².

Area of faces = 3 (√3/4 × 5.2²) = 35.1in².

Surface area = (35.1 + 11.7)in² = 46.8in².

[3] Area of base = 7 × 10 = 70in².

Area of faces = 2(1/2 × 7 × 6) + 2(1/2 × 10 × 4.8)

= 98in².

Surface area = (70 + 98)in² = 168in².

7 0
3 years ago
A rectangular prism has dimensions of 3 cm. by 5 cm. by 5 cm. What is its surface area?
Bogdan [553]

\bf \textit{surface area of a rectangular prism}\\\\ SA=2Lw+2Lh+ 2wh~~ \begin{cases} L=length\\ w=width\\ h=height\\ \cline{1-1} L=3\\ w=5\\ h = 5 \end{cases} \\\\\\ SA=2(3\cdot 5)+2(3\cdot 5)+2(5\cdot 5)\implies SA=30+30+50\implies SA=110

4 0
3 years ago
Other questions:
  • I really need help, I am on the practice.
    10·1 answer
  • When y=-2, what kind of line does it have horizontal or vertical
    12·1 answer
  • A spinner with 9 equal sections is numbered 1 through 9. The probability of spinning a 1 or a 9 is 2/9 .
    8·2 answers
  • Your heart beats 320 times in 5 minutes. What is your heart rate?
    12·2 answers
  • Think of the number seven. Now add eight to it. Now add four more. Now subtract nine. Now add three. Your answer is _____.
    12·2 answers
  • PLEASE HELP ASAP I DONT GET SOMEONE PLEASE EXPLAIN TOO!!!
    6·2 answers
  • The table shows the heights in inches of seven players on a college basketball team. Which statement is NOT true?
    9·2 answers
  • 850 projects were entered in the science fair. If 86% of the projects did not receive a ribbon, then how many student projects d
    10·1 answer
  • Find the price of each product after a discount is applied. A game system costs 199.75 with a discount rate of 18%.
    13·2 answers
  • Solve the formula V = pi r2h for r
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!