Answer:
you cut off some of the problem
Step-by-step explanation:
That's true.
That will make the thing a third of its original size.
If you're trying to solve for x, keep in mind the ln (natural log) of e is 1. So take the natural log of both sides, which will give you ln Y = ln e^x. The ln and e essentially cancel out, so you're left with x = ln Y.
Get the derivative:
<em>y</em> = (9 - <em>x</em>²)¹ʹ³
d<em>y</em>/d<em>x</em> = 1/3 (9 - <em>x</em>²)⁻²ʹ³ d/d<em>x</em> [9 - <em>x</em>²]
d<em>y</em>/d<em>x</em> = 1/3 (9 - <em>x</em>²)⁻²ʹ³ (-2<em>x</em>)
d<em>y</em>/d<em>x</em> = -2/3 <em>x</em> (9 - <em>x</em>²)⁻²ʹ³
Evaluate it at <em>x</em> = 1 :
d<em>y</em>/d<em>x</em> (1) = -2/3 • 8⁻²ʹ³
Since 8 = 2³, we have
8⁻²ʹ³ = 1 / 8²ʹ³ = 1 / (2³)²ʹ³ = 1 / 2² = 1/4
Then the tangent line has equation
<em>y</em> - 2 = 1/4 (<em>x</em> - 1) → <em>y</em> = 1/4 <em>x</em> + 7/4
Yes, it this somehow related to mathematics? Was this a question?