Here, Initial momentum = mu = 6*2 = 12 Kg m/s
Final momentum = mv = 6*4 = 24 Kg m/s
In short, Your Answer would be Option C
Hope this helps!
Answer:

Explanation:
The gravitational force between the proton and the electron is given by

where
G is the gravitational constant
is the proton mass
is the electron mass
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

The electrical force between the proton and the electron is given by

where
k is the Coulomb constant
is the elementary charge (charge of the proton and of the electron)
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

So, the ratio of the electrical force to the gravitational force is

So, we see that the electrical force is much larger than the gravitational force.
<span>Weight of the skydiver m = 500 N
Terminal velocity V = 90 km/h
Here the weight of the person acts as the force, so based on the Newton's third law the applied is the force what we but in the opposite direction making the resistance. So the air resistance exerted on Suzie will be her weight that is 500N</span>
Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
My calculations state, not rounding, the mass is 1.8