Answer:
a) v₂ = 4.2 m/s
b) v₂ = 5 m/s
Explanation:
a)
We will use the law of conservation of momentum here:

where,
m₁ = m₂ = mass of bowling pin = 1.8 kg
u₁ = speed of first pin before collsion = 5 m/s
u₂ = speed of second pin before collsion = 0 m/s
v₁ = speed of first pin after collsion = 0.8 m/s
v₂ = speed of second after before collsion = ?
Therefore,

<u>v₂ = 4.2 m/s</u>
<u></u>
b)
We will use the law of conservation of momentum here:

where,
m₁ = m₂ = mass of bowling pin = 1.8 kg
u₁ = speed of first pin before collsion = 5 m/s
u₂ = speed of second pin before collsion = 0 m/s
v₁ = speed of first pin after collsion = 0 m/s
v₂ = speed of second after before collsion = ?
Therefore,

<u>v₂ = 5 m/s</u>
The correct answer is D. the star is getting farther away.
When the light has red-shifted, it shows that everything is moving away from a certain point. This is known as the Doppler effect and proves the Big Bang (which would be the center point that everything is moving away from). Just as a 'for your information', blue shift is when the star is moving towards us.
Hope I helped :)
They can tell what type/species the dinosaur was
If only internal forces are doing work (no work done by external forces), then there is no change in the total amount of mechanical energy. The total mechanical energy is said to be conserved. ... In these situations, the sum of the kinetic and potential energy is everywhere the same.