Answer:
Explanation:
Range of projectile R = 20 m
formula of range
R = u² sin2θ / g
u is initial velocity , θ is angle of projectile
putting the values
20 = u² sin2x 40 / 9.8
u² = 199
u = 14.10 m /s
At the initial point
vertical component of u
= u sin40 = 14.1 x sin 40
= 9.06 m/s
Horizontal component
= u cos 30
At the final point where the ball strikes the ground after falling , its speed remains the same as that in the beginning .
Horizontal component of velocity
u cos 30
Vertical component
= - u sin 30
= - 9.06 m /s
So its horizontal component remains unchanged .
change in vertical component = 9.06 - ( - 9.06 )
= 18.12 m /s
change in momentum
mass x change in velocity
= .050 x 18.12
= .906 N.s
Impulse = change in momentum
= .906 N.s .
Answer:
a)
a = 2 [m/s^2]
b)
a = 1.6 [m/s^2]
c)
xt = 2100 [m]
Explanation:
In order to solve this problem we must use kinematics equations. But first we must identify what kind of movement is being studied.
a)
When the car moves from rest to 40 [m/s] by 20 [s], it has a uniformly accelerated movement, in this way we can calculate the acceleration by means of the following equation:

where:
Vf = final velocity = 40 [m/s]
Vi = initial velocity = 0 (starting from rest)
a = acceleration [m/s^2]
t = time = 20 [s]
40 = 0 + (a*20)
a = 2 [m/s^2]
The distance can be calculates as follows:

where:
x1 = distance [m]
40^2 = 0 + (2*2*x1)
x1 = 400 [m]
Now the car maintains its speed of 40 [m/s] for 30 seconds, we must calculate the distance x2 by means of the following equation, it is important to emphasize that this movement is at a constant speed.
v = x2/t2
where:
x2 = distance [m]
t2 = 30 [s]
x2 = 40*30
x2 = 1200 [m]
b)
Immediately after a change of speed occurs, such that the previous final speed becomes the initial speed, the new Final speed corresponds to zero, since the car stops completely.

Note: the negative sign of the equation means that the car is stopping, i.e. slowing down.
0 = 40 - (a *25)
a = 40/25
a = 1.6 [m/s^2]
The distance can be calculates as follows:

0 = (40^2) - (2*1.6*x3)
x3 = 500 [m]
c)
Now we sum all the distances calculated:
xt = x1 + x2 + x3
xt = 400 + 1200 + 500
xt = 2100 [m]
<span>"A force is required to cause motion to deviate from a straight line.</span>