Answer: CaF2
Explanation:
Calcium is a metal and has 2+ cation charge. While F us in group 7 with an oxidation of -1.
So. Ca²+ F- do the criss cross rule where the charge of the cation will be the subscript of the anion and vice versa. So the result is CaF2
Answer: A) Forces of attraction and repulsion exist between gas particles at close range.
Explanation:
The <u>Ideal Gas equation</u> is:
Where:
is the pressure of the gas
is the volume of the gas
the number of moles of gas
is the gas constant
is the absolute temperature of the gas in Kelvin
According to this law, molecules in gaseous state do not exert any force among them (attraction or repulsion) and the volume of these molecules is small, therefore negligible in comparison with the volume of the container that contains them. In this sense, real gases can behave approximately to an ideal gas, under conditions of high temperature and low pressures.
However, at low temperatures or high pressures, real gases deviate significantly from ideal gas behavior. This is because at low temperatures molecules begin to move slower, allowing the repulsive and attractive forces among them to take effect. In fact, <u>the attraction forces are responsible for the condensation of the gas</u>. In addition, at high pressures the volume of molecules cannot be approximated to zero, hence the volume of these molecules is not negligible anymore.
Cathode rays were shown to be a stream of "electrons".
Cathode rays (likewise called an electron beam) are streams of electrons saw in vacuum tubes. In the event that a cleared glass tube is outfitted with two anodes and a voltage is connected, the glass inverse the negative terminal is seen to sparkle from electrons radiated from the cathode. Electrons were first found as the constituents of cathode beams. The picture in an exemplary TV is made by centered light emission redirected by electric or magnetic fields in cathode ray tubes (CRTs).
The answer is D. When you melt something, it only changes its physical change.