Answer:
The recoil velocity is 0.354 m/s.
Explanation:
Given that,
Mass of hunter = 70 kg
Mass of bullet = 42 g = 0.042 kg
Speed of bullet = 590 m/s
We need to calculate the recoil speed of hunter
Using conservation of momentum
![m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}](https://tex.z-dn.net/?f=m_%7B1%7Du_%7B1%7D%2Bm_%7B2%7Du_%7B2%7D%3Dm_%7B1%7Dv_%7B1%7D%2Bm_%7B2%7Dv_%7B2%7D)
Where,
= mass of hunter
= mass of bullet
u = initial velocity
v = recoil velocity
Put the value in the equation
![0+0=70\times v_{1}+0.042\times590](https://tex.z-dn.net/?f=0%2B0%3D70%5Ctimes%20v_%7B1%7D%2B0.042%5Ctimes590)
![v_{1}=-\dfrac{0.042\times590}{70}](https://tex.z-dn.net/?f=v_%7B1%7D%3D-%5Cdfrac%7B0.042%5Ctimes590%7D%7B70%7D)
![v=-0.354\ m/s](https://tex.z-dn.net/?f=v%3D-0.354%5C%20m%2Fs)
Hence, The recoil velocity is 0.354 m/s.
Answer:
<h2>18150 J</h2>
Explanation:
The kinetic energy of the car can be found by using the formula
![k = \frac{1}{2} m {v}^{2} \\](https://tex.z-dn.net/?f=k%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20m%20%7Bv%7D%5E%7B2%7D%20%20%5C%5C%20)
m is the Mass
v is the velocity
From the question we have
![k = \frac{1}{2} \times 1200 \times {5.5}^{2} \\ = 600 \times 30.25](https://tex.z-dn.net/?f=k%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5Ctimes%201200%20%5Ctimes%20%20%7B5.5%7D%5E%7B2%7D%20%20%5C%5C%20%20%3D%20600%20%5Ctimes%2030.25)
We have the final answer as
<h3>18150 J</h3>
Hope this helps you
Answer:
Long question good luck:)
Explanation:
Answer should be the earth