Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:

Derivative Property [Addition/Subtraction]:

Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Reverse Power Rule]:

Integration Property [Multiplied Constant]:

Integration Methods: U-Substitution and U-Solve
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify given.</em>
<em />
<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution/u-solve</em>.
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Derivative Rules and Properties]:

- [<em>du</em>] Rewrite [U-Solve]:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Apply U-Solve:

- [Integrand] Simplify:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integral] Apply Integration Rule [Reverse Power Rule]:

- [<em>u</em>] Back-substitute:

∴ we have used u-solve (u-substitution) to <em>find</em> the indefinite integral.
---
Learn more about integration: brainly.com/question/27746495
Learn more about Calculus: brainly.com/question/27746485
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Angle 4 is 77 degrees. Since angles 1, 2, and 3 must add up to 180 degrees, and angles 3 and 4 must also add up to 180 degrees, angles 1 + 2 must be equal to angle 4
It’s 42 but Carrier the 2
Basically solve for y
minus 5x fromboth sides
-15y=-5x-60
divide both sides by -15
y=1/3x+4
The sketch of the parabola is attached below
We have the focus

The point

The directrix, c at

The steps to find the equation of the parabola are as follows
Step 1
Find the distance between the focus and the point P using Pythagoras. We have two coordinates;

and

.
We need the vertical and horizontal distances to find the hypotenuse (the diagram is shown in the second diagram).
The distance between the focus and point P is given by

Step 2
Find the distance between the point P to the directrix

. It is a vertical distance between y and c, expressed as

Step 3
The equation of parabola is then given as

=


⇒ substituting a, b and c


⇒Rearranging and making

the subject gives