Answer:
x = 1474.9 [m]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces must be equal to the product of mass by acceleration.
We must understand that when forces are applied on the body, they tend to slow the body down to stop it.
So as the body continues to move to the left, it is slowing down. Therefore we must calculate this deceleration value using Newton's second law. We must perform a sum of forces on the x-axis equal to the product of mass by acceleration. With leftward movement as negative and rightward forces as positive.
ΣF = m*a
![10 +12*sin(60)= - 6*a\\a = - 3.39[m/s^{2}]](https://tex.z-dn.net/?f=10%20%2B12%2Asin%2860%29%3D%20-%206%2Aa%5C%5Ca%20%3D%20-%203.39%5Bm%2Fs%5E%7B2%7D%5D)
Now using the following equation of kinematics, we can calculate the distance of the block, before stopping completely. The initial speed must be 100 [m/s].

where:
Vf = final velocity = 0 (the block stops)
Vo = initial velocity = 100 [m/s]
a = - 3.39 [m/s²]
x = displacement [m]
![0 = 100^{2}-2*3.39*x\\x=\frac{10000}{2*3.39}\\x=1474.9[m]](https://tex.z-dn.net/?f=0%20%3D%20100%5E%7B2%7D-2%2A3.39%2Ax%5C%5Cx%3D%5Cfrac%7B10000%7D%7B2%2A3.39%7D%5C%5Cx%3D1474.9%5Bm%5D)
Good afternoon!
the answer to that particular question is this
rule
a particular pitch directly corresponds to frequency in that if you have a pitch you will have a high frequency
if you a low frequency you will have a low pitch
both are intertwined in marriage!
To determine the displacement, since we are given the potential energy, we use the equation for potential energy. For a spring, it is one-half the product of the spring constant and the square of the displacement. We do as follows:
PE = kx^2/2
5 Nm = 50N/m (x^2)
x = 0.32 m
Therefore, the displacement would be 0.32 m.
Your body continues to move unless stopped by the seatbelt. An object in motion will remain in motion. Since your body was already moving it will continue to.
Kinematics is the study of the motion of a system of bodies without directly considering the forces or potential fields affecting the motion. In other words, kinematics examines how momentum and energy are shared among interacting bodies.