Answer:
The force of friction acting on block B is approximately 26.7N. Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.
Explanation:
The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.
To solve this problem, start with setting up the net force equations for both block A and B:

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

The force of friction acting on block B is approximately 26.7N.
This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.
You would need to use the equation a= (v-u)÷t
You need to substitute in the correct numbers.
a= (10-20)÷1
Your answer is -10m/s^2
Answer:
4 times
Explanation:
As we know that the energy of a wave is directly proportional to the square of the amplitude of the wave,
Here, the amplitude of the wave A is twice as compared to B.
So, the energy of wave A is 4 times the energy of wave B.
Answer:



- Our final answer is 15 kg .
----------- HappY LearninG<3 ------------