the answer is B 4-6 months thats when they can pick up large objects.
Answer:
Option A = 1.
Explanation:
So, in order to solve this question we are given the Important infomation or data or parameters in the question above as;
(1). First, Both objects A and D represent fixed.
(2). Both objects A and D are negatively-charged particles of equal magnitude.
(3). "Object B represents a fixed, positively-charged particle (equal, but opposite charge from A and D)."
(4). "Object C shows a moving, positively-charged particle."
So, our mission is to determine the arrow that would correctly show the force of attraction or repulsion on object C caused by the other two objects.
We can do that by drawing out the forces of attraction and the resultants. Therefore, CHECK THE ATTACHED FILE/PICTURE FOR THE DRAWINGS.
The forces of attraction due to objects A and B on on object C will be towards themselves. Hence, the resultant is ONE(1).
Answer:
0.976 c
Explanation:
= velocity of object 1 relative to earth = 0.80 c
= velocity of object 2 relative to object 1 = 0.80 c
= velocity of object 2 relative to earth
Velocity of object 2 relative to earth is given as
= 0.976 c
Potential energy is energy that is found in a system, grounded on the position of objects. The Coulomb (C) is the unit of charge, and the unit of electric potential is the Volt (V), which is equivalent to (J/C) or Joule per Coulomb.So the formula for this is potential = kQ / d, plugging in the given from the questions will give us:potential = 8.99e9N·m²/C² * 1.602e-19C / 0.053e-9m = 27 V
Answer:
1 ohm
Explanation:
First of all, the equivalent resistance for two resistors (r₁ and r₂) in parallel is given by:
1 / Eq = (1 / r₁) + (1 / r₂)
The equivalent resistance for resistance for two resistors (r₁ and r₂) in series is given by:
Eq = r₁ + r₂
Hence as we can see from the circuit diagram, 2Ω // 2Ω, and 2Ω // 2Ω, hence:
1/E₁ = 1/2 + 1/2
1/E₁ = 1
E₁ = 1Ω
1/E₂ = 1/2 + 1/2
1/E₂ = 1
E₂ = 1Ω
This then leads to E₁ being in series with E₂, hence the equivalent resistance (E₃) of E₁ and E₂ is:
E₃ = E₁ + E₂ = 1 + 1 = 2Ω
The equivalent resistance (Eq) across AB is the parallel combination of E₃ and the 2Ω resistor, therefore:
1/Eq = 1/E₃ + 1/2
1/Eq = 1/2 + 1/2
1/Eq = 1
Eq = 1Ω